- Математическая разминка презентация к уроку (2 класс)
- Скачать:
- Предварительный просмотр:
- Подписи к слайдам:
- По теме: методические разработки, презентации и конспекты
- Математическая разминка, 1 класс, устный счёт в трёх уровнях, Полникова М.Ю., 2012
- Эффективный счёт в уме или разминка для мозга
- Игровые упражнения для устного счёта на уроках математики в начальной школе
- Хромает устный счет? Давайте покажу примеры, которые помогают моим ученикам научиться хорошо считать
- Этот способ помогает мне:
- Как работать с этим листом?
- Какого результата мы ждем?
Математическая разминка
презентация к уроку (2 класс)
Материал для проведения устного счета во 2 классе
Скачать:
Вложение | Размер |
---|---|
matematicheskaya_razminka_2_klass.ppt | 533 КБ |
Предварительный просмотр:
Подписи к слайдам:
8+3 10+6 6+6 9+8 9+6 9+9 6+7 7+7 11 12 13 14 15 16 17 18 19 20
Вспомните правила! Чтобы найти неизвестное слагаемое, надо из…… Чтобы найти неизвестное вычитаемое, надо из…… Чтобы найти неизвестное уменьшаемое, надо к…… … к разности прибавить вычитаемое. … суммы вычесть известное слагаемое. … уменьшаемого вычесть разность
Найди число, в котором 8 дес. 8 0 9 10
Найди число, в котором 4 дес.8ед. 4 8 40 8 4
Вставь пропущенное число: 8 0… 10 0. 9 0 31 49
Закончи фразу: длина спички 4 0 … м м м с м
Закончи фразу: толщина книги 7 … м м с м дм
1 дм = … см = … мм ? 1 дм=10см=100мм 1 дм=100см=10 мм
1 рубль = ….копеек ? 100 копеек 10 копеек
Длина комнаты 5м, а ширина на 2м меньше. Чему равна ширина? 3м 7м 3дм
Задача 1. (данная) Было – 8 к. Взяли – 3 к. Осталось — ? к. Лежало – ? к. Взяли – 3 к. Осталось – 5 к. Лежало – 8 к. Взяли – ? к. Осталось – 5 к. 8 – 3 = 5 (к.) — осталось 5 + 3 = 8 (к.) — лежало 8 – 5 = 3 (к.) — взяли Задача 2. (обратная данной) Задача 3. (обратная данной)
По теме: методические разработки, презентации и конспекты
Хорошо развитые навыки устного счета — одно из условий успешного обучения учащихся. Начинать развивать эти навыки необходимо, когда учащиеся учатся в начальной школы. Если не научить считать в этот пе.
Цель: развитие математических умений.
Математическая разминка(устный счёт 2 класс).
Математическая разминка для 1 класса проводится в виде игры с героями мультфильма Смешарики.
МАтематические разминки. Устный счет для второго полугодия 1 класса.
Математическая разминка для 3 класса (I четверть).
Источник
Математическая разминка, 1 класс, устный счёт в трёх уровнях, Полникова М.Ю., 2012
Математическая разминка, 1 класс, устный счёт в трёх уровнях, Полникова М.Ю., 2012.
Предисловие.
Трудно переоценить значение устной работы на уроках математики. В основном эта работа сводится к вычислениям и носит название «устный счёт». Для современного ученика это понятие необходимо расширить, сделав его более многообразным, интересным, разноуровневым. Комплект из диска и сборника-тетради содержит работы из трёх заданий с возрастающей степенью сложности. Они создают определённую систему повторения изученного материала, автоматизируют навык устных вычислений, но самое главное, активизируют мыслительную деятельность, развивают интерес к предмету, так как в их основе лежат не только общие (13+8=13+7+1), но и особые (13+8=18+3+13+8=11+10) приёмы вычислений. Иными словами дети учатся рациональном приёмам, ищут новые способы вычислений. Это развивает математическую зоркость, формирует такие мыслительные операции, как анализ, синтез, сравнение, аналогия, обобщение.
Работа № 4
1. 2 + 1 =____; 4-1 =____;
1 + 1 + 1 =____; 3 — 2 =____;
2 + 2 =____; 4 — 1 — 1 =____;
1 + 3 =____; 5 — 3 =____;
3 + 2 =____; 5 — 4 =____.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математическая разминка, 1 класс, устный счёт в трёх уровнях, Полникова М.Ю., 2012 — fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу
Источник
Эффективный счёт в уме или разминка для мозга
Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.
Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно. Для его учеников не было особой проблемой посчитать подобный пример в уме:
Используем круглые числа
Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:
Т.к. на 10, 100, 1000 и др. круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.
Еще пример:
Упростим умножение делением
При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):
Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4. Например,
Теперь не кажется невозможным умножить в уме 625 на 53:
Возведение в квадрат двузначного числа
Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения. Остальные квадраты можно посмотреть в нижеприведённой таблице:
Приём Рачинского заключается в следующем. Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,
В общем случае (M — двузначное число):
Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые:
Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться.
И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.
Умножение двузначных чисел
Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.
Пусть даны два двузначных числа, у которых сумма единиц равна 10:
Составив их произведение, получим:
Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к. 7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.
Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:
У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.
48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит,
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
Тогда предыдущий пример можно вычислить немного проще:
Вместо заключения
Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать голосовую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.
Использованная литература:
«1001 задача для умственного счёта в школе С.А. Рачинского».
Источник
Игровые упражнения для устного счёта на уроках математики в начальной школе
Выбранный для просмотра документ Пояснительная записка.docx
Автор, загружаемого материала
Место работы, должность
Учитель начальных классов МБОУ «Веретьинская сош»
Тренажер в виде анимированной работы
Устный счет в пределах 100
Название темы или раздела учебного курса
Сложение и вычитание в пределах 100
УМК, авторы образовательной программы
Цель, задачи авторского материала
Отработка навыка сложения и вычитания в пределах 100, активизация познавательной деятельности на уроке.
Среда, редактор, в котором выполнен продукт
Office PowerPoint 2010
Необходимое оборудование для занятия
Компьютер, мультимедийный проектор, экран.
Презентация с пояснительной запиской
Краткое описание, методические рекомендации
Тренажёр «Устный счет» можно применять на уроках математики и во внеурочной работе. Детям предлагаются игры для отработки вычислительных навыков в пределах 100.
Список используемых источников
Ранее не публиковался и не размещался
Математика – царица наук. С ней учащиеся сталкиваются каждый день. И поэтому, учителю необходимо развивать интерес к предмету математика. Развивать познавательный интерес можно через разные виды устного счета. Педагоги всегда уделяли внимание обучению рациональным приемам устного счета. Устный счет — математические вычисления, осуществляемые человеком без помощи дополнительных устройств (калькулятор, счёты) и приспособлений (ручка, бумага).
В процессе обучения математики формируется понятие о способах вычислений: на основе свойств сложения и вычитания, представление двузначного числа в виде суммы удобных и разрядных слагаемых. Задача учителя научить быстро и правильно выполнять устные вычисления, которые активизируют мыслительную деятельность учеников, как сравнение, аналогия, классификация. Устный счет развивает устную речь, память, концентрирует внимание, расширяет кругозор. Математика- ум приводит в порядок.
На каждом уроке математике устному счету отвожу 5-8 минут. И этот этап урока не случаен, он служит мостиком от ранее изученного к новому материалу и носит проблемный характер. Что позволяет подобрать задания разные по уровню и сложности, рассчитанные на сильного и слабого ученика. В устный счет можно включать задания на повторение и обобщение пройденного материала.
Устный счет позволяет учителю контролировать знания учащихся. А учащимся производить самоконтроль своих знаний.
Задания при устном счете должны быть разнообразными, целенаправленные. К устному счету должны привлекаться все ученики.
Для устного счета я использую игровые упражнения, некоторые предлагаю для вашего внимания.
Название работы. Устный счет в пределах 100.
Игра «Продолжи ряд!» Учащиеся называют числа. Слайд позволяет быстро проверить ответы детей. Числа появляются по щелчку.
Игра «Засели домик» Повторение темы «Состав числа». Домик заселяется по щелчку.
Сложение и вычитание в пределах 100.
Игра «Круговые примеры». Допиши ответ.
«Помоги гусенице найти путь». Задание построено таким образом, что перед учениками встает выбор: какой дорожкой идти.
«Закрась одним цветом».
Надо выбрать числа, разность которых будет равна 6.
Нахождение значений математических выражений.
Требуется найти числовое значение, полученного выражения, где вместо переменной буквы нужно подставить заданное число.
Выполнение вычислений с элементами самоконтроля.
Выполнить вычисления и отгадать имя сказочной героини. Если вычисления верны, то получится имя героини.
Какие знаки действий можно поставить вместо кружков и какие цифры — вместо квадратов, чтобы получились верные равенства?
Класс делится на две команды. Ученики каждой команды по очереди должны выполнять вычисления и забивать в ворота соперников.
Сравнение математических выражений.
«Сравни, не вычисляя»
В математические выражения поставить знаки «больше», «меньше»
Адреса электронных сайтов, которые использовала в работе
Источник
Хромает устный счет? Давайте покажу примеры, которые помогают моим ученикам научиться хорошо считать
Последний раз меня выручили эти примеры, когда ко мне привели мальчика восьмого класса. Он затруднялся осуществлять простые арифметические действия в пределах двадцати. Да-да, бывает, ещё и не такое бывает.
Этот способ помогает мне:
1. Выявить пробелы в арифметике.
2. Довести до автоматизма навык устного счёта в пределах 10.
3. Проверить, насколько сформирован навык аналитического мышления.
Вот этот лист с примерами. Я его составляла лично, но на авторство не претендую. Вполне возможно, что мои коллеги уже додумались до этого простого арифметического тренажера:
В основном, я работаю по нему с дошкольниками и младшими школьниками. Но бывают разные ситуации, когда необходимо быстро поправить положение.
Как работать с этим листом?
Если вы хотите проверить, как обстоят дела у вашего школьника с устным счётом, дайте ему посмотреть эти примеры. Дальше два варианта: ученик сразу замечает некую закономерность (не буду говорить, какую). У такого ученика, скорее всего, нет проблем с устным счетом в пределах десяти.
Только говорить, что закономерность существует, не надо! Нам дорого как раз то, что ребенок её сам обнаружит. Можно намекнуть. Сказать, что это такая арифметическая загадка)
Если сразу закономерность не находится, то просто предложите устно складывать. На каком-то этапе мозг проанализирует информацию и найдет нужную последовательность.
А потом мы проделываем это упражнение пять раз за пять дней. Желательно в первой половине дня. Устно складываем и всё. За один день – один подход. Разумеется, каждый случай будем рассматривать в отдельности. Но в среднем – пяти раз будет достаточно.
Останется только раз в десять дней проводить ревизию. Повторение — мать учения, вы это и без меня знаете.
Какого результата мы ждем?
Визуальное запоминание состава числа десять. По сути, перед нами шпаргалка с наиболее неприятными парами. Приведу пример:
1+9 = 10. Это для мозга очень легко.
3+4 = 7. А вот это уже сложнее. В ход идут пальчики, мы задумались и глаза у нас забегали.
Я не буду раскрывать основной секрет этого листа. Вы, друзья мои, и сами догадаетесь. О ходе тренировок можете писать мне в комментариях. Присылайте реакцию ваших ребят, на какой минуте найдена закономерность, насколько быстрее были результаты по устному счету за пятый день, чем за первый.
Времени у нас с вами очень много. Целое лето, за которое мы можем в ненавязчивой игровой форме помочь нашему школьнику научиться хорошо считать в уме.
P. S.: Про восьмиклассника. Я не ошиблась. Счет в пределах 20 у него хромал именно потому, что плавал счет в пределах 10. А вот здесь я уже писала , что состав десятки мы должны знать назубок! Чтобы ночью! Чтобы как штык! Чтобы отскакивало! И тогда все отлично будет у нашего школьника с математикой, я проверяла👍
Напишите, если пригодилось. У меня ещё дальше наработки есть. Буду тогда выкладывать)
Источник