- 5 ускорителей устного счета
- 1. Как быстро складывать и вычитать числа
- Рассмотрим три случайных примера:
- Вернемся к нашим примерам:
- Оптимизируем вычитаемые числа:
- Итого получим:
- Посчитайте сейчас представленные ниже примеры этим способом:
- 2. Как быстро умножать на 4, 8 и 16
- Примеры раскладывания чисел на более простые:
- Отработайте этот способ на следующих примерах:
- 3. Деление числа на 5
- Возьмем следующие примеры:
- Для того чтобы проработать этот способ решите следующие примеры:
- 4. Умножение на однозначные числа
- Игра «Быстрое сложение»
- Игра «Быстрый счет»
- Игра «Угадай операцию»
- Игра «Упрощение»
- Задание на сегодня
- Урок взят из курса «Устный счет за 30 дней»
- Другие развивающие курсы
- Деньги и мышление миллионера
- Скорочтение за 30 дней
- Развитие памяти и внимания у ребенка 5-10 лет
- Супер-память за 30 дней
- Как улучшить память и развить внимание
- Секреты фитнеса мозга, тренируем память, внимание, мышление, счет
- Эффективный счёт в уме или разминка для мозга
5 ускорителей устного счета
В устном счете, как и везде, есть свои хитрости, и чтобы научиться быстрее считать нужно, знать эти хитрости и уметь применять на практике.
Сегодня мы этим и займемся!
1. Как быстро складывать и вычитать числа
Рассмотрим три случайных примера:
Если считать в уме обычным способом, то возникают затруднения, ведь вычитаемое число больше чем вторая цифра в первом числе и начинаются затруднения и торможения с запоминанием остатка.
Типа 25 – 7 = (20 + 5) – (5- 2) = 20 – 2 = (10 + 10) – 2 = 10 + 8 = 18
Согласитесь, что такие операции сложно проворачивать в голове.
Но есть более простой способ:
25 – 7 = 25 – 10 + 3, так как -7 = -10 + 3
Намного проще вычесть из числа 10 и прибавить 3, чем городить сложные вычисления.
Вернемся к нашим примерам:
Оптимизируем вычитаемые числа:
- Вычесть 7 = вычесть 10 прибавить 3
- Вычесть 8 = вычесть 10 прибавить 2
- Вычесть 9 = вычесть 10 прибавить 1
Итого получим:
- 25 – 10 + 3 =
- 34 – 10 + 2 =
- 77 – 10 + 1 =
Вот теперь намного интересней и проще!
Посчитайте сейчас представленные ниже примеры этим способом:
- 91 – 7 =
- 23 – 6 =
- 24 – 5 =
- 46 – 8 =
- 13 – 7 =
- 64 – 6 =
- 72 – 19 =
- 83 – 56 =
- 47 – 29 =
2. Как быстро умножать на 4, 8 и 16
В случае умножения мы тоже разбиваем числа на более простые, например:
Если помните таблицу умножения, то все просто. А если нет?
Тогда нужно упростить операцию:
Наибольшее число ставим первым, а второе раскладываем на более простые:
Удваивать числа гораздо легче, нежели чем учетверять или увосьмирять их.
8 * 4 = 8 * 2 * 2 = 16 * 2 = 32
Примеры раскладывания чисел на более простые:
Отработайте этот способ на следующих примерах:
- 3 * 8 =
- 6 * 4 =
- 5 * 16 =
- 7 * 8 =
- 9 * 4 =
- 8 * 16 =
3. Деление числа на 5
Возьмем следующие примеры:
Деление и умножение с числом 5 всегда очень простые и приятные, ведь пять это половина от десяти.
И как их быстро решить?
- 780 / 10 * 2 = 78 * 2 = 156
- 565 /10 * 2 = 56,5 * 2 = 113
- 235 / 10 * 2 = 23,5 *2 = 47
Для того чтобы проработать этот способ решите следующие примеры:
- 300 / 5 =
- 120 / 5 =
- 495 / 5 =
- 145 / 5 =
- 990 / 5 =
- 555 / 5 =
- 350 / 5 =
- 760 / 5 =
- 865 / 5 =
- 1270 / 5 =
- 2425 / 5 =
- 9425 / 5 =
4. Умножение на однозначные числа
С умножением немного сложнее, но не сильно, как бы Вы решили следующие примеры?
Без специальных фишек решать их не очень приятно, но благодаря методу «Разделяй и властвуй» мы можем сосчитать их гораздо быстрее:
- 56 * 3 = (50 + 6)3 = 503 + 6*3 = ?
- 122 * 7 = (100 + 20 + 2)7 = 1007 + 207 + 27 = ?
- 523 * 6 = (500 + 20 + 3)6 = 5006 + 206 + 36 =?
Нам остается только перемножить однозначные числа, некоторые из которых с нулями и сложить полученные результаты.
Для проработки этой техники решите следующие примеры:
- 123 * 4 =
- 236 * 3 =
- 154 * 4 =
- 490 * 2 =
- 145 * 5 =
- 990 * 3 =
- 555 * 5 =
- 433 * 7 =
- 132 * 9 =
- 766 * 2 =
- 865 * 5 =
- 1270 * 4 =
- 2425 * 3 =
Делимость числа на 2, 3, 4, 5, 6 и 9
Проверьте числа: 523, 221, 232
Число делится на 3, если сумма его цифр делится на 3.
Например, возьмем число 732, представим его как 7 + 3 + 2 = 12. 12 делится на 3, а значит, число 372 делится на 3.
Проверьте, какие из следующих чисел делятся на 3:
12, 24, 71, 63, 234, 124, 123, 444, 2422, 4243, 53253, 4234, 657, 9754
Число делится на 4, если число, состоящее из последних двух его цифр, делится на 4.
Например, 1729. Последние две цифры образуют 20, которое делится на 4.
Проверьте, какие из следующих чисел делятся на 4:
20, 24, 16, 34, 54, 45, 64, 124, 2024, 3056, 5432, 6872, 9865, 1242, 2354
Число делится на 5, если его последняя цифра 0 или 5.
Проверьте, какие из следующих чисел делятся на 5 (самое легкое упражнение):
3, 5, 10, 15, 21, 23, 56, 25, 40, 655, 720, 4032, 14340, 42343, 2340, 243240
Число делится на 6, если оно делится и на 2 и на 3.
Проверьте, какие из следующих чисел делятся на 6:
22, 36, 72, 12, 34, 24, 16, 26, 122, 76, 86, 56, 46, 126, 124
Число делится на 9, если сумма его цифр, делится на 9.
Например, возьмем число 6732, представим его как 6 + 7 + 3 + 2 = 18. 18 делится на 9, а значит, число 6732 делится на 9.
Проверьте, какие из следующих чисел делятся на 9:
9, 16, 18, 21, 26, 29, 81, 63, 45, 27, 127, 99, 399, 699, 299, 49
Игра «Быстрое сложение»
- Ускоряет устный счет
- Тренирует внимание
- Развивает творческое мышление
Отличный тренажер для развития быстрого счета. На экране дана таблица 4х4, а над ней показаны числа. Самое большое число нужно собрать в таблице. Для этого нажмите мышкой на два числа, сумма которых равна этому числу. Например, 15+10 = 25.
Игра «Быстрый счет»
Игра «быстрый счет» поможет вам усовершенствовать свое мышление. Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.
Игра «Угадай операцию»
Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Игра «Упрощение»
Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.
Задание на сегодня
Решить все примеры и тренироваться минимум 10 минут в игре Быстрое сложение.
Очень важно отработать все задания этого урока. Чем лучше Вы будете выполнять задания, тем больше будет пользы. Если Вы чувствуете, что Вам мало заданий — можете сами составлять себе примеры и решать их и тренироваться в математические развивающие игры.
Урок взят из курса «Устный счет за 30 дней»
Научитесь быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. Научу использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.
Другие развивающие курсы
Деньги и мышление миллионера
Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.
Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.
Скорочтение за 30 дней
Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.
Развитие памяти и внимания у ребенка 5-10 лет
Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать.
После прохождения курса ребенок сможет:
- В 2-5 раз лучше запоминать тексты, лица, цифры, слова
- Научится запоминать на более длительный срок
- Увеличится скорость воспоминания нужной информации
Супер-память за 30 дней
Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.
Как улучшить память и развить внимание
Бесплатное практическое занятие от advance.
Секреты фитнеса мозга, тренируем память, внимание, мышление, счет
Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.
Источник
Эффективный счёт в уме или разминка для мозга
Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.
Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно. Для его учеников не было особой проблемой посчитать подобный пример в уме:
Используем круглые числа
Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:
Т.к. на 10, 100, 1000 и др. круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.
Еще пример:
Упростим умножение делением
При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):
Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4. Например,
Теперь не кажется невозможным умножить в уме 625 на 53:
Возведение в квадрат двузначного числа
Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения. Остальные квадраты можно посмотреть в нижеприведённой таблице:
Приём Рачинского заключается в следующем. Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,
В общем случае (M — двузначное число):
Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые:
Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться.
И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.
Умножение двузначных чисел
Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.
Пусть даны два двузначных числа, у которых сумма единиц равна 10:
Составив их произведение, получим:
Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к. 7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.
Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:
У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.
48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит,
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
Тогда предыдущий пример можно вычислить немного проще:
Вместо заключения
Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать голосовую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.
Использованная литература:
«1001 задача для умственного счёта в школе С.А. Рачинского».
Источник