Тренировка всех типов мышечных волокон
Хотите узнать как тренировать разные типы мышечных волокон? Тогда читайте статью «Тренировка всех типов мышечных волокон»…
Многие годы эксперты и спортсмены всего мира пытались понять, как реализовать свой мышечный потенциал и добиться роста всех мышечных волокон. Если ранее это было недоступно, то сегодня современные технологии нам позволяют заглянуть немного дальше.
Проводившиеся неоднократно эксперименты в этой области смогли показать и самое важное доказать что наши мышцы имеют разную степень сопротивляемости мышечных волокон.
И что при разной степени сопротивления в работу включается только какая-то определённая часть мышечных волокон.
Наши мышцы не включаются в работу полностью при очень низкой нагрузке и это связано с тем, что наш мозг изначально вычисляет то, сколько потребуется подключить мышечных волокон и потратить на это энергии.
В зависимости от нагрузки и интенсивности тренировок наш мозг даёт определённый сигнал нашим мышцам и то сколько в данном случае необходимо подключить мышечных волокон для того чтобы поднять тот или иной вес и вместе с этим оптимально распределяет энергию на выполнение данной задачи.
По сути наш мозг вычисляет самый оптимальный вариант того сколько мышц нам потребуется для выполнения определённой задачи. А главное то, сколько при этом самих сил и энергии нам понадобится для выполнения той или иной задачи. Стоит сразу отметить, что чем больший вес мы с вами используем на своих тренировках, тем больше мышечных волокон у нас включаются.
Причём они включаются не сразу же все, а только лишь поочерёдно, начиная с самых слабых и заканчивая самыми сильными. Наш мозг также вычисляет потенциальную нагрузку и поочерёдно включает в работу необходимое для этого число мышечных волокон, которое будет достаточное для выполнения данной задачи. При этом наши с вами мышцы разделены как бы на определённые типы категорий, которые отвечают за определённую нагрузку и сопротивление.
Как мы знаем наши мышцы имеют разный тип мышечных волокон, которые включаются в работу при относительно разной нагрузке и при разной продолжительности этой самой нагрузки.
Один тип мышечных волокон включается только лишь при работе с большими рабочими весами и не продолжительной работе мышц, а другие же мышечные волокна напротив включаются в работу только лишь при работе с относительно небольшими рабочими весами, но при очень продолжительной работе самих мышц.
Так какие же типы мышечных волокон существуют?
Все мы с вами знаем что существуют два основных типа мышечных волокон это быстрые мышечные волокна (БМВ), которые в основном включаются в работу только при больших рабочих весах и отвечают за взрывную силу и максимальные силовые показатели, но при этом они не имеют выносливости и поэтому быстро устают.
И медленные мышечные волокна (ММВ), которые обладают уже куда меньшей силой, но зато гораздо большей выносливостью и меньшей утомляемостью. Все эти мышцы включаются в работу только лишь при более продолжительной мышечной нагрузке.
Помимо основных мышечных волокон также существуют ещё и так называемые промежуточные мышечные волокна, которые в той или иной степени относятся к определённому типу и имеют схожие с ним свойства.
Так называемые эксперты классифицируют тип мышечных волокон только лишь на две основные категории это быстрые и медленные мышечные волокна, что само по себе уже не правильно…
По разным оценкам физиологов и многочисленных учёных на сегодняшний день насчитывается примерно 8 основных типов мышечных волокон в наших мышцах.
Потому как каждая категория мышечных волокон, а именно это (БМВ) и (ММВ) также ещё делятся на основные подгруппы.
ММС – медленные мышечные волокна
• МО — (медленные окислительные)
• М — (медленные)
БМВ – быстрые мышечные волокна
• БО — (быстрые окислительные)
• БВ — (быстрые выносливые)
• БОГ — (быстрые окислительно-гликогенные)
• БС — (быстрые среднеутомляемые)
• БГ — (быстрые гликогенные)
• БЛ — (быстрые легкоутомляемые)
Но для большего удобства в основном используют классификацию, состоящую только из двух основных категорий это (БМВ) быстрые мышечные волокна и (ММВ) медленные мышечные волокна.
Как включить в работу сразу все типы мышечных волокон?
Физиологи и учёные смогли выяснить что для того чтобы в работу включались сразу все типы мышечных волокон необходимо было выполнить следующие условия, которые позволили бы это сделать, тем самым активизировав сразу же весь спектр мышечных волокон одновременно.
Для этого необходимо приложить максимальное сопротивление при очень продолжительном воздействии. Иными словами необходимо работать со своим максимальным весом. При этом находясь под нагрузкой около 60-90 секунд,
Иными словами вы должны будете выполнить со своим максимальным весом 20-30 полноценных повторений.
Что по сути сделать просто не возможно…
Только лишь при таких условиях в работу включаются все типы мышечных волокон. При этом стоит понимать, что каждый тип мышечных волокон будет включаться лишь при определённой нагрузке и при определённом времени под нагрузкой.
Классификация и основные функции мышечных волокон:
ММС – медленные мышечные волокна
МО (медленные окислительные) этот тип мышечных волокон включается в работу постоянно т.к. именно этот тип мышечных волокон требует минимальной нагрузки на наши мышцы. Всё это означает что они менее энергозатратнее, которые по своей сути выполняют самые основные и самые продолжительные функции наших мышц.
Приблизительная нагрузка на эти мышечные волокна составляет менее 15% процентов, а именно это 0% — 15% от максимального сопротивление ваших мышц.
М (медленные) этот тип мышечных волокон включается в работу уже при 15%-35% процентных весах с общей продолжительностью в 90-120 секунд и более, что будет по сути равняться приблизительно 30-40 полноценным повторениям.
БМВ – быстрые мышечные волокна
БО (быстрые окислительные) эти мышечные волокна включается в работу как правило, при 35% — 45% процентных весах и с общей продолжительностью 90 секунд, что равняется 20-30 полноценным повторениям.
БВ (быстрые выносливые) эти мышечные волокна включается в работу на 45%-55% процентных весах в рамках 60-90 секунд, что равняется 20 полноценным повторениям.
БОГ (быстрые окислительно-гликогенные) этот тип мышечных волокон включается в работу на 55%-65% процентных весах в рамках 30-60 секунд, что равняется приблизительно 10 — 15 повторениям.
БС (быстрые среднеутомляемые) мышечные волокна включается в работу при 65%-75% процентных весах в рамках 15-30 секунд, что равняется 6-10 полноценным повторениям.
БГ (быстрые гликогенные) этот тип мышечных волокон включается в работу при 75%-85% процентных весах в рамках 10 — 15 секунд, что примерно равняется 4 — 6 полноценным повторениям.
БЛ (быстрые легкоутомляемые) эти мышечные волокна включается при работе с 85%-95%(100%) процентным максимальным весом в пределах 5-10 секунд, что равняется одному-двум повторениям.
Конечно же, это не совсем точные значения потому как я всё-таки не являюсь каким-либо учёным или физиологом, но данные значения могут служить в качестве приблизительного шаблона, которым вы можете также воспользоваться.
Стоит ещё раз отметить, что все типы мышечных волокон не включаются в работу сразу, а включаются только лишь при необходимости.
Если вы работаете с весом 20-30 процентов, то в работу включаются только лишь то количество ваших мышечных волокон, которое будет способно выполнить эту работу, не затрачивая при этом энергию на подключение остальных типов мышечных волокон. Иными словами наш с вами мозг включает в работу только лишь оптимальное число мышечных волокон, которое будет необходимо для того, чтобы эту работу выполнить и поднять данный вес.
Если же мы поднимаем наш 100% процентный максимальный вес, то наш мозг поймёт что для выполнения данной задачи нам с вами необходимо задействовать и подключать уже все имеющиеся силы и все наши ресурсы. А значит что все типы мышечных волокон будут задействованы для выполнения данной работы и поднятия данного веса.
Также учёным удалось выяснить, что наши мышечные волокна включаются в работу только лишь при двух составляющих, это нагрузка и вес самого снаряда и продолжительность работы, т.е. время под нагрузкой.
Таким образом самое правильное в этой ситуации это чередовать нагрузку для проработки разных типов мышц и мышечных волокон.
В последствии ряда опытов и экспериментов учёным всё же удалось выяснить что все (БМВ) быстрые мышечные волокна включаются в работу при нагрузки в 75%-85%(90%) процентов от своего разового максимума, что примерно равняется 4-6(8) повторениям.
Тогда как (ММВ) медленные мышечные волокна отлично включаются в работу уже при 30% — 60% процентных весах выполненного на 15-20(25) повторений.
Таким образом получается что постоянное чередование нагрузки на своих тренировках, развивает практически все мышечные волокна.
А это даёт куда больший толчок к дальнейшему мышечному росту, чем использование какого-то одного диапазона повторений в своих тренировках.
Способы тренировок БМВ и ММВ
Есть несколько способов того как вы можете чередовать такие тренировки прорабатывая при этом разные мышечные волокна.
Первый способ это чередовать одну силовую тренировку, которая будет нацелена на проработку быстрых мышечных волокон с так скажем более лёгкой тренировкой, которая уже будет нацелена на проработку медленных мышечных волокон.
Второй способ это включать в свою тренировку сразу же проработку быстрых и медленных мышечных волокон в рамках уже одной своей тренировки.
Для этого лучше всего подходит метод 50/100, в котором вы сразу прорабатываете два типа мышечных волокон, что на мой взгляд весьма удобно.
Также вы можете прорабатывать сначала одни мышечные волокна, затем переходить к работе над другими мышечными волнами также в рамках одной своей тренировки.
Например, сначала работая над (БМВ) быстрыми мышечными волокнами затем переходить на проработку (ММВ) медленных мышечных волокон или наоборот.
В любом случае чтобы вы не выбрали, так или иначе данный способ чередования и поочерёдная проработка сразу всех типов мышечных волокон позволит вам прогрессировать значительно эффективней…
💪 Делюсь самыми крутыми фишками здесь
Источник
Тренировка всех типов мышечных волокон
На протяжении многих лет изучение процессов синтеза белков в скелетных мышцах при выполнении различных физических нагрузок остаётся актуальной проблемой биохимии и физиологии. Мышцы и их силовые характеристики очень важная составляющая организма каждого спортсмена, которая позволяет достигать результатов. В связи с прогрессивным развитием спорта и вовлечением большого количества людей в физическую культуру, тема здоровья спортсменов становится все более актуальной, интересной и увлекательной. Учитывая существующую сильную корреляцию между площадью поперечного сечения мышц и мышечной силой, стремление увеличить мышечную массу тела есть у каждого человека, занимающегося спортом. Кроме этого, необходимо помнить, что преобладание мышечной массы в организме благоприятно влияет на метаболические процессы.
Скелетная мышца – одна из наиболее пластичных структур в организме млекопитающих. При повышенной активности и нагрузке часто происходит увеличение её размеров, объёмов миофибриллярного аппарата, повышение сократительных возможностей (силы, мощности). Процесс прироста мышечной массы зависит от различных факторов: наследственных, конституциональных, а также пола, возраста, метаболизма, гормонального фона. Кроме того, с приобретением опыта тренировок становится все труднее увеличить мышечную массу, поэтому важно понимать и активно использовать все возможные механизмы этого процесса.
Клетки поперечно-полосатой мускулатуры отличаются от гладкомышечных миоцитов. Клетки скелетных мышц образуют многоядерный синцитий, основное вещество которого формируют миофибриллы, состоящие из толстых и тонких миофиламентов. Первый тип образуют молекулярные единицы и миозин, а второй тип содержит тропомиозин с тропонином и F-актин. Многие авторы считают скелетную мускулатуру гетерогенной системой относительно устройства и выполняемых функций, несмотря на её строгую организацию. Данное свойство помогает мышцам соответствовать возлагаемой на них функции. Так путём изменения количества саркомеров и миофибрилл обеспечивается их функциональная реорганизация [1].
Работа мышц проявляется их сокращением, которое начинается с появления очага возбуждения на нейромышечных окончаниях. Наружная мембрана деполяризуется, открываются кальциевые каналы, и концентрация кальция внутри клетки возрастает. Ионы кальция связываются с тропонином, при этом конформируется тропониновый комплекс. Участки цепей миозина связываются с актином, что сопровождается высвобождением энергии вследствие расщепления АТФ до АДФ и остатка фосфорной кислоты. Угол между лёгкой и тяжёлой цепями миозина изменяется и актиновый филамент перемещается к центру саркомера, что приводит к изменению длины мышцы, её сокращению [1, 2].
Клетки скелетных мышц подразделяются на два типа:
А) Миосателлиты – взрослые стволовые клетки мышечной ткани. Представляют собой основу для обновления мышц и прироста их массы;
Б) Миосимпласты – формируют многоядерный синцитий. Сами по себе являются мышечными тубами с миофибриллами внутри, по периферии которых располагаются ядра.
Нагрузки, оказываемые на мышцы, и само мышечное сокращение имеют некую зависимость. Предполагается, что первое будет напрямую соответствовать второму. Это достигается за счёт усиления экспрессии генов сократительных белков и энзимов обменных процессов. Мышечная активность сопровождается количественными и качественными изменениями в миоцитах того типа, которые необходимы для наиболее эффективного осуществления выполняемой работы [2].
Мышечные волокна делятся на медленные (I тип) и быстрые (II тип). Оба этих типа имеют различный состав, включающий в себя сократительные белки, ферменты энергетического обмена и внутриклеточный кальций.
Увеличение силы мышц проявляется структурными перестройками, которые затрагивают нервную и мышечные системы. Изменения в нервной системе проявляются трансформацией величины кортикальных полей, которые регулируют выполнение определённого вида движения, влиянием на синхронизацию моторных единиц и на обучение определенных мышц, отвечающих за выполнение данного вида движений. Таким образом, наибольшая активность мышц наблюдается именно тогда, когда она необходима для достижения максимального эффекта (активность мышц агонистов при одновременной пассивности антагонистов). Также наблюдается изменение частоты и устойчивости генерируемых импульсов и порога возбудимости мотонейронов. Изменения в мышечной системе могут быть связаны с гипертрофией скелетных мышц (увеличение размеров мышечного волокна) и с их гиперплазией (увеличение количества миоцитов) [3].
Но прежде чем переходить к последним двум процессам, необходимо разобраться с изменениями, происходящими в самих мышцах. В момент выполнения работы миоцит подвергается действию физических и гуморальных факторов (пассивные механические силы, гипоксемия, факторы роста, и т.д.). Они являются причиной запуска путей передачи сигнала внутри клеток, опосредуя транскрипцию и трансляцию генов, ответственных за синтез белков [2]. Изменения данных путей сопровождаются реорганизацией мышечных волокон, точнее их типов.
Одним из основных исходных сигналов является повышенная концентрация кальция внутри клетки и кальцинейрина. Кальцинейрин дефосфорилирует факторы транскрипции – NFAT (nuclear factor of activated T-cells), которые находятся в фосфорилированном состоянии [4]. Данные факторы в дефосфорилированной форме активируют гены-мишени, что способствует перестроению быстрых волокон в медленные.
По мере приспособления мышц к нагрузкам изменяются и процессы метаболизма в них. Существуют различные параметры, влияющие на формирование адаптивных механизмов в миоцитах при выполнении работы. Важнейшим является гипоксия, которая, в свою очередь активирует ферментные системы (фумараза, цитратсинтаза, ЛДГ) и запускает работу факторов транскрипции (PGC1). При недостатке кислорода происходит активация одной изоформы семейства гипоксия-индуцированных факторов (HIF; hypoxia inducible factor), которая проникает в ядро, связывается с определенным участком ДНК и активирует гены, отвечающие за гликолиз, потребление кислорода и ангиогенез, увеличивая данные процессы. Некоторые гормоны также способны влиять на экспрессию генов в мышечных клетках. Это такие гормоны, как инсулин, гормон роста, которые вместе с кортизолом запускают катаболические реакции в условиях метаболического и энергетического истощения [3].
Стоит напомнить, что мышцы не являются постоянными клетками, а заменяются в течение жизни. Пролиферация необходима для предотвращения апоптоза клеток (регулируемый процесс клеточной гибели) и поддержания массы скелетных мышц. Это осуществляется через динамический баланс между синтезом белков в мышцах и их распадом. Мышечная гипертрофия возникает тогда, когда синтез белков превышает их распад.
Что же наблюдается при гипертрофии и гиперплазии мышечного волокна? При растяжении и сокращении мышц происходит образование факторов роста IGF и MGF, которые могут действовать как паракринно, так и аутокринно. С одной стороны, их действие проявляется в увеличении синтеза сократительных белков мышечных волокон. Основным участником данного механизма является фосфорилированная PKB [5]. Её активация начинается с влияния на мышцу нагрузки, которая приводит к синтезу гена, запускающего путь IGF/PI3K. В ткани имеется несколько изоформ, некоторые из них (IGF-1 и MGF), взаимодействуя с рецепторами приводят к конформационным изменениям. Через фосфорилирование ряда рецепторов и происходит активация PKB, способствующая развитию анаболических реакций [6].
С другой же стороны, происходит усиление пролиферации миосателлитов, их митотическая активность приводит к формированию новых клеток, а также сопровождается слиянием их с имеющимися мышечными волокнами или даёт возможность формировать новые. Миосателлиты расположены между базальной мембраной и сарколеммой. Покоящиеся клетки активируются непосредственно травмированием мышцы и в ответ на это начинают активно делиться и соединяться с частями поврежденного волокна. Под влиянием тяжёлой изнурительной работы происходит также активация данных клеток из-за образования многочисленных микротравм мышечного волокна. Вследствие этого наблюдается явление подобное процессам, происходящим при воспалении. В зону повреждения активно мигрируют нейтрофилы и макрофаги, которые активируют синтез ранее упомянутых факторов роста, регулирующих пролиферацию и дифференцировку миосателлитов. Мышечная гипертрофия отличается от мышечной гиперплазии. При гипертрофии мышц, увеличиваются сократительные элементы, и межклеточный матрикс расширяется для поддержки роста. Гиперплазия приводит к увеличению количества мышечных волокон. Гипертрофия сократительных элементов может происходить путем добавления саркомеров либо последовательно или параллельно.
В отечественной литературе не утихают споры о патогенетических аспектах мышечного роста. Чаще всего гипертрофию скелетных мышц человека рассматривают как их долговременную адаптацию к физическим нагрузкам различной направленности. Но существует понятие о кратковременной гипертрофии скелетных мышц – то есть изменение объема мышцы в результате одной силовой тренировки. Спортсмены, выступающие в соревнованиях по бодибилдингу или бодифитнесу хорошо знают, что объем мышц можно немного увеличить за счет собственной крови и осмотического давления, если использовать специальный метод тренировки – пампинг.
Неоспоримым является факт увеличения объёма мышечных волокон. Это так называемая миофибриллярная гипертрофия, при которой происходит изменение объёма миофибрилл и плотность их укладки. Механизм связан с увеличением количества саркомеров в миофибриллах. Значительная роль при этом отводится активированным клеткам-сателлитам. Миогенные стволовые клетки начинают пролифелировать, а затем сливаются с существующими клетками или взаимодействуют между собой для формирования новых мышечных волокон. Этот механизм актуален при восстановлении травмированных клеток и при спортивной гипертрофии.
Существует множество данных, доказывающих идущий параллельно с этим процесс увеличения объёма несократительной части мышцы – саркоплазматическая гипертрофия. Это тонкие перестройки на биохимическом уровне клетки, а так же увеличение количества митохондрий. Многие авторы считают, что трансформации в саркоплазме повышают выносливость мышц. Ряд исследователей утверждает, что увеличение различных неконтрактильных элементов и жидкости действительно может привести к приросту мышечной массы, но без сопутствующего увеличения силы. Саркоплазматическая гипертрофия достигается специальными тренировками и часто описывается как нефункциональная. Однако ряд специалистов предполагают, что отек мышечных волокон вызывает увеличение синтеза белка и таким образом способствует росту сократительной ткани.
Эти процессы редко бывают сбалансированными и зависят от характера и интенсивности нагрузки. В скелетных мышцах при этом синтез мышечных белков преобладает над их распадом. Причиной такого метаболизма сторонники гипотезы ацидоза считают накопление молочной кислоты. С точки зрения другой теории – временная гипоксия запускает реперфузию мышц и активирует деление клеток-сателлитов. Последнее время широкое распространение получила гипотеза механического повреждения мышечных волокон. Микроразрывы сократительных белков и повреждения саркоплазмы сопровождается увеличением концентрации ионов кальция, что и стимулирует пролиферацию сателлитов.
Из этого следует, что механизмы мышечной гипертрофии известны и неоспоримы. Очень дискутабельным остается вопрос о наличии процесса гиперплазии мышц. Большинство авторов сходится во мнении, что увеличение количества мышечных волокон у человека не доказано, но при этом описывается возможность получения гиперплазии мышц в экспериментальных условиях у животных (млекопитающих и птиц). Некоторые исследователи допускают частичное увеличения числа волокон. На основании проведенного мета-анализа экспериментальных работ отмечено, что количество мышечных элементов увеличилось в экспериментах на птицах значительнее, чем при использовании в качестве подопытных млекопитающих. Примечательно также, что эффект гиперплазии наблюдался там, где использовались постоянные растяжения, а не упражнения, сочетающие его с расслаблением. Ряд исследователей (Kraemer, William J. и MacDougall J.) утверждают, что этот механизм может осуществляться под влиянием силовых тренировок. Однако доказательств увеличения мышечных волокон у людей недостаточно. Длительных исследований (более года) добровольцев и спортсменов не проводилось. Высказывается мнение, что это слишком короткий период для этого процесса. Гиперплазия подтверждается в биопсийном материале, а погрешность этого метода составляет около 10 %, что делает результат очень сомнительным.
Общее число волокон предопределяется генетически и практически не меняется в течение жизни без применения специальных стимуляторов. Российские ученые подтверждают, что вклад гиперплазии в процесс увеличения объема мышц составляет не более 5 % и, как правило, потенцирован использованием анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.
Таким образом, при мышечной работе происходит множество процессов на разных уровнях. Начиная с изменений интенсивности обменных процессов и заканчивая изменениями механизмов нервной и гуморальной регуляции. Реорганизация мышц, лежащая в основе этих процессов, приводит к изменению многочисленных характеристик деятельности спортсменов.
Проанализировав все данные и изучив все возможные гипотезы, становится очевидным, что в увеличении мышечных волокон играют некую роль всё-таки два процесса. Первый – гипертрофия с ёе подвидами для сократительной и несократительной части мышцы (миофибриллярная и саркоплазматическая), которая, по мнению многих исследователей, занимает основополагающую роль. И второй это гиперплазия с её минимальным, но существенным вкладом.
Источник