Рост мышц от силовых тренировок
На протяжении многих лет изучение процессов синтеза белков в скелетных мышцах при выполнении различных физических нагрузок остаётся актуальной проблемой биохимии и физиологии. Мышцы и их силовые характеристики очень важная составляющая организма каждого спортсмена, которая позволяет достигать результатов. В связи с прогрессивным развитием спорта и вовлечением большого количества людей в физическую культуру, тема здоровья спортсменов становится все более актуальной, интересной и увлекательной. Учитывая существующую сильную корреляцию между площадью поперечного сечения мышц и мышечной силой, стремление увеличить мышечную массу тела есть у каждого человека, занимающегося спортом. Кроме этого, необходимо помнить, что преобладание мышечной массы в организме благоприятно влияет на метаболические процессы.
Скелетная мышца – одна из наиболее пластичных структур в организме млекопитающих. При повышенной активности и нагрузке часто происходит увеличение её размеров, объёмов миофибриллярного аппарата, повышение сократительных возможностей (силы, мощности). Процесс прироста мышечной массы зависит от различных факторов: наследственных, конституциональных, а также пола, возраста, метаболизма, гормонального фона. Кроме того, с приобретением опыта тренировок становится все труднее увеличить мышечную массу, поэтому важно понимать и активно использовать все возможные механизмы этого процесса.
Клетки поперечно-полосатой мускулатуры отличаются от гладкомышечных миоцитов. Клетки скелетных мышц образуют многоядерный синцитий, основное вещество которого формируют миофибриллы, состоящие из толстых и тонких миофиламентов. Первый тип образуют молекулярные единицы и миозин, а второй тип содержит тропомиозин с тропонином и F-актин. Многие авторы считают скелетную мускулатуру гетерогенной системой относительно устройства и выполняемых функций, несмотря на её строгую организацию. Данное свойство помогает мышцам соответствовать возлагаемой на них функции. Так путём изменения количества саркомеров и миофибрилл обеспечивается их функциональная реорганизация [1].
Работа мышц проявляется их сокращением, которое начинается с появления очага возбуждения на нейромышечных окончаниях. Наружная мембрана деполяризуется, открываются кальциевые каналы, и концентрация кальция внутри клетки возрастает. Ионы кальция связываются с тропонином, при этом конформируется тропониновый комплекс. Участки цепей миозина связываются с актином, что сопровождается высвобождением энергии вследствие расщепления АТФ до АДФ и остатка фосфорной кислоты. Угол между лёгкой и тяжёлой цепями миозина изменяется и актиновый филамент перемещается к центру саркомера, что приводит к изменению длины мышцы, её сокращению [1, 2].
Клетки скелетных мышц подразделяются на два типа:
А) Миосателлиты – взрослые стволовые клетки мышечной ткани. Представляют собой основу для обновления мышц и прироста их массы;
Б) Миосимпласты – формируют многоядерный синцитий. Сами по себе являются мышечными тубами с миофибриллами внутри, по периферии которых располагаются ядра.
Нагрузки, оказываемые на мышцы, и само мышечное сокращение имеют некую зависимость. Предполагается, что первое будет напрямую соответствовать второму. Это достигается за счёт усиления экспрессии генов сократительных белков и энзимов обменных процессов. Мышечная активность сопровождается количественными и качественными изменениями в миоцитах того типа, которые необходимы для наиболее эффективного осуществления выполняемой работы [2].
Мышечные волокна делятся на медленные (I тип) и быстрые (II тип). Оба этих типа имеют различный состав, включающий в себя сократительные белки, ферменты энергетического обмена и внутриклеточный кальций.
Увеличение силы мышц проявляется структурными перестройками, которые затрагивают нервную и мышечные системы. Изменения в нервной системе проявляются трансформацией величины кортикальных полей, которые регулируют выполнение определённого вида движения, влиянием на синхронизацию моторных единиц и на обучение определенных мышц, отвечающих за выполнение данного вида движений. Таким образом, наибольшая активность мышц наблюдается именно тогда, когда она необходима для достижения максимального эффекта (активность мышц агонистов при одновременной пассивности антагонистов). Также наблюдается изменение частоты и устойчивости генерируемых импульсов и порога возбудимости мотонейронов. Изменения в мышечной системе могут быть связаны с гипертрофией скелетных мышц (увеличение размеров мышечного волокна) и с их гиперплазией (увеличение количества миоцитов) [3].
Но прежде чем переходить к последним двум процессам, необходимо разобраться с изменениями, происходящими в самих мышцах. В момент выполнения работы миоцит подвергается действию физических и гуморальных факторов (пассивные механические силы, гипоксемия, факторы роста, и т.д.). Они являются причиной запуска путей передачи сигнала внутри клеток, опосредуя транскрипцию и трансляцию генов, ответственных за синтез белков [2]. Изменения данных путей сопровождаются реорганизацией мышечных волокон, точнее их типов.
Одним из основных исходных сигналов является повышенная концентрация кальция внутри клетки и кальцинейрина. Кальцинейрин дефосфорилирует факторы транскрипции – NFAT (nuclear factor of activated T-cells), которые находятся в фосфорилированном состоянии [4]. Данные факторы в дефосфорилированной форме активируют гены-мишени, что способствует перестроению быстрых волокон в медленные.
По мере приспособления мышц к нагрузкам изменяются и процессы метаболизма в них. Существуют различные параметры, влияющие на формирование адаптивных механизмов в миоцитах при выполнении работы. Важнейшим является гипоксия, которая, в свою очередь активирует ферментные системы (фумараза, цитратсинтаза, ЛДГ) и запускает работу факторов транскрипции (PGC1). При недостатке кислорода происходит активация одной изоформы семейства гипоксия-индуцированных факторов (HIF; hypoxia inducible factor), которая проникает в ядро, связывается с определенным участком ДНК и активирует гены, отвечающие за гликолиз, потребление кислорода и ангиогенез, увеличивая данные процессы. Некоторые гормоны также способны влиять на экспрессию генов в мышечных клетках. Это такие гормоны, как инсулин, гормон роста, которые вместе с кортизолом запускают катаболические реакции в условиях метаболического и энергетического истощения [3].
Стоит напомнить, что мышцы не являются постоянными клетками, а заменяются в течение жизни. Пролиферация необходима для предотвращения апоптоза клеток (регулируемый процесс клеточной гибели) и поддержания массы скелетных мышц. Это осуществляется через динамический баланс между синтезом белков в мышцах и их распадом. Мышечная гипертрофия возникает тогда, когда синтез белков превышает их распад.
Что же наблюдается при гипертрофии и гиперплазии мышечного волокна? При растяжении и сокращении мышц происходит образование факторов роста IGF и MGF, которые могут действовать как паракринно, так и аутокринно. С одной стороны, их действие проявляется в увеличении синтеза сократительных белков мышечных волокон. Основным участником данного механизма является фосфорилированная PKB [5]. Её активация начинается с влияния на мышцу нагрузки, которая приводит к синтезу гена, запускающего путь IGF/PI3K. В ткани имеется несколько изоформ, некоторые из них (IGF-1 и MGF), взаимодействуя с рецепторами приводят к конформационным изменениям. Через фосфорилирование ряда рецепторов и происходит активация PKB, способствующая развитию анаболических реакций [6].
С другой же стороны, происходит усиление пролиферации миосателлитов, их митотическая активность приводит к формированию новых клеток, а также сопровождается слиянием их с имеющимися мышечными волокнами или даёт возможность формировать новые. Миосателлиты расположены между базальной мембраной и сарколеммой. Покоящиеся клетки активируются непосредственно травмированием мышцы и в ответ на это начинают активно делиться и соединяться с частями поврежденного волокна. Под влиянием тяжёлой изнурительной работы происходит также активация данных клеток из-за образования многочисленных микротравм мышечного волокна. Вследствие этого наблюдается явление подобное процессам, происходящим при воспалении. В зону повреждения активно мигрируют нейтрофилы и макрофаги, которые активируют синтез ранее упомянутых факторов роста, регулирующих пролиферацию и дифференцировку миосателлитов. Мышечная гипертрофия отличается от мышечной гиперплазии. При гипертрофии мышц, увеличиваются сократительные элементы, и межклеточный матрикс расширяется для поддержки роста. Гиперплазия приводит к увеличению количества мышечных волокон. Гипертрофия сократительных элементов может происходить путем добавления саркомеров либо последовательно или параллельно.
В отечественной литературе не утихают споры о патогенетических аспектах мышечного роста. Чаще всего гипертрофию скелетных мышц человека рассматривают как их долговременную адаптацию к физическим нагрузкам различной направленности. Но существует понятие о кратковременной гипертрофии скелетных мышц – то есть изменение объема мышцы в результате одной силовой тренировки. Спортсмены, выступающие в соревнованиях по бодибилдингу или бодифитнесу хорошо знают, что объем мышц можно немного увеличить за счет собственной крови и осмотического давления, если использовать специальный метод тренировки – пампинг.
Неоспоримым является факт увеличения объёма мышечных волокон. Это так называемая миофибриллярная гипертрофия, при которой происходит изменение объёма миофибрилл и плотность их укладки. Механизм связан с увеличением количества саркомеров в миофибриллах. Значительная роль при этом отводится активированным клеткам-сателлитам. Миогенные стволовые клетки начинают пролифелировать, а затем сливаются с существующими клетками или взаимодействуют между собой для формирования новых мышечных волокон. Этот механизм актуален при восстановлении травмированных клеток и при спортивной гипертрофии.
Существует множество данных, доказывающих идущий параллельно с этим процесс увеличения объёма несократительной части мышцы – саркоплазматическая гипертрофия. Это тонкие перестройки на биохимическом уровне клетки, а так же увеличение количества митохондрий. Многие авторы считают, что трансформации в саркоплазме повышают выносливость мышц. Ряд исследователей утверждает, что увеличение различных неконтрактильных элементов и жидкости действительно может привести к приросту мышечной массы, но без сопутствующего увеличения силы. Саркоплазматическая гипертрофия достигается специальными тренировками и часто описывается как нефункциональная. Однако ряд специалистов предполагают, что отек мышечных волокон вызывает увеличение синтеза белка и таким образом способствует росту сократительной ткани.
Эти процессы редко бывают сбалансированными и зависят от характера и интенсивности нагрузки. В скелетных мышцах при этом синтез мышечных белков преобладает над их распадом. Причиной такого метаболизма сторонники гипотезы ацидоза считают накопление молочной кислоты. С точки зрения другой теории – временная гипоксия запускает реперфузию мышц и активирует деление клеток-сателлитов. Последнее время широкое распространение получила гипотеза механического повреждения мышечных волокон. Микроразрывы сократительных белков и повреждения саркоплазмы сопровождается увеличением концентрации ионов кальция, что и стимулирует пролиферацию сателлитов.
Из этого следует, что механизмы мышечной гипертрофии известны и неоспоримы. Очень дискутабельным остается вопрос о наличии процесса гиперплазии мышц. Большинство авторов сходится во мнении, что увеличение количества мышечных волокон у человека не доказано, но при этом описывается возможность получения гиперплазии мышц в экспериментальных условиях у животных (млекопитающих и птиц). Некоторые исследователи допускают частичное увеличения числа волокон. На основании проведенного мета-анализа экспериментальных работ отмечено, что количество мышечных элементов увеличилось в экспериментах на птицах значительнее, чем при использовании в качестве подопытных млекопитающих. Примечательно также, что эффект гиперплазии наблюдался там, где использовались постоянные растяжения, а не упражнения, сочетающие его с расслаблением. Ряд исследователей (Kraemer, William J. и MacDougall J.) утверждают, что этот механизм может осуществляться под влиянием силовых тренировок. Однако доказательств увеличения мышечных волокон у людей недостаточно. Длительных исследований (более года) добровольцев и спортсменов не проводилось. Высказывается мнение, что это слишком короткий период для этого процесса. Гиперплазия подтверждается в биопсийном материале, а погрешность этого метода составляет около 10 %, что делает результат очень сомнительным.
Общее число волокон предопределяется генетически и практически не меняется в течение жизни без применения специальных стимуляторов. Российские ученые подтверждают, что вклад гиперплазии в процесс увеличения объема мышц составляет не более 5 % и, как правило, потенцирован использованием анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.
Таким образом, при мышечной работе происходит множество процессов на разных уровнях. Начиная с изменений интенсивности обменных процессов и заканчивая изменениями механизмов нервной и гуморальной регуляции. Реорганизация мышц, лежащая в основе этих процессов, приводит к изменению многочисленных характеристик деятельности спортсменов.
Проанализировав все данные и изучив все возможные гипотезы, становится очевидным, что в увеличении мышечных волокон играют некую роль всё-таки два процесса. Первый – гипертрофия с ёе подвидами для сократительной и несократительной части мышцы (миофибриллярная и саркоплазматическая), которая, по мнению многих исследователей, занимает основополагающую роль. И второй это гиперплазия с её минимальным, но существенным вкладом.
Источник
Как восстановиться после интенсивной физической нагрузки
Одним из ключевых условий достижения результатов в фитнесе и других видах спорта является восстановление. Оно включает возвращение физического состояния в норму и адаптацию к предстоящим нагрузкам для улучшения формы. Отсутствие баланса между интенсивными тренировками и отдыхом негативно сказывается на спортивных показателях. На длительной дистанции это может привести к возникновению плато или обратному эффекту, плохому самочувствию, болям в мышцах, снижению продуктивности. Чтобы избежать упадка сил и не ухудшить спортивные показатели, нужно эффективно восстанавливаться после занятий. Как делать это быстро и правильно для увеличения функциональности организма, расскажем в данной статье.
Основные фазы восстановления
При небольших нагрузках все внутренние процессы работают в привычном режиме. Увеличение активности и выполнение тяжелых упражнений мобилизуют внутренние резервы организма, заставляя работать его с большей производительностью. На интенсивные нагрузки организм откликается появлением болевых ощущений. Это происходит из-за выработки кортизола, разрушающего мышцы. Восстановление в данной ситуации важно, поскольку оно помогает вернуть физиологическое и биохимическое состояние. Суть сбалансированного отдыха заключается в снижении негативных последствий из-за микротравм мышечных волокон и извлечении пользы от занятий на тренажере. Исследования объясняют, что пренебрежение данным этапом приводит к ухудшению спортивных показателей. Человек не в состоянии поддерживать выбранный темп, если не соблюдает режим. Кроме того, достижение результатов и становление личных рекордов требует полного восстановления после каждого посещения зала. После физических упражнений организм готовится к будущим нагрузкам, увеличивая мышечную массу. Чем выше интенсивность, тем серьезнее подготовка. Поэтому наиболее эффективными считаются занятия на полную мощность с использованием всех ресурсов. Однако выносливость и сила в данном случае будут улучшаться не во время тренировок, а после них.
Несмотря на индивидуальность и зависимость отдыха от различных факторов, восстановление организма делят на четыре фазы:
- Быстрая. Около 30 минут после завершения тренировок. Человек чувствует сильный голод, поскольку организм старается быстро вернуться в естественное состояние за счет восполнения запасов питательных веществ.
- Замедленная. Регенерация тканей и клеток. Организм атлета начинает приходить в норму — восстанавливается водно-электролитный баланс, запускается ферментный, белковый и аминокислотный синтез, усваиваются питательные вещества, поступающие с едой.
- Суперкомпенсация. Активируется спустя несколько дней после тренировок и действует в течение 48 часов. Во время данного периода наблюдается увеличение физических показателей. Поскольку человек при суперкомпенсации готов к новым нагрузкам, рекомендуется выполнять новую тренировку до завершения фазы.
- Отсроченная. Наступает, если спортсмен прекращает занятия на длительное время. В этой фазе мышечные ткани возвращаются в ту же форму, которая была до посещения тренажерного зала.
В зависимости от группы мышц, на восстановление требуется 36-72 часа. Это стоит учитывать при составлении программы, поскольку интенсивные нагрузки чаще одного раза в 2-3 дня несут больше вреда, чем пользы. Стоит учитывать, что большие мышцы требуют больше времени отдыха. После кардионагрузок, которые не нуждаются в затратах запаса энергии и не повреждают большого количества мышц, на полное восстановление уходит до 3 дней.
Основные методы восстановления
В период, когда спортсмен отдыхает от нагрузок, нужно прекратить тренировки. Важным средством для роста мышц и поддержания организма в тонусе является сон. Именно в это время мышечные ткани активно растут и увеличиваются в объеме. Выделять на сон нужно не менее 8 часов. Следует соблюдать еще несколько условий — для полноценного отдыха засыпать лучше в полной темноте и тишине, на удобной подушке и комфортном матрасе.
На улучшение спортивных показателей и эффективности отдыха сказываются следующие средства:
- Постепенное сбавление темпа. Завершать занятие в спортивном зале силовыми упражнениями нежелательно. В этом случае поможет растяжка или кардио-велотренажер или беговая дорожка в легком темпе.
- Обильное питье. Вода остается лучшим способом поддержки организма, поскольку влияет на большое количество процессов. Вода предотвращает перетренированность и способствует эффективному отдыху. Однако не стоит пить в больших количествах. Вместо того чтобы выпить бутылку за раз, лучше сделать несколько глотков. Большое количество воды нагружает сердце.
- Соблюдение режима питания. Рекомендуется употреблять питательную еду, поскольку именно первые 30 минут организм усваивает углеводы и аминокислоты. В зависимости от интенсивности, длительности занятий и физической формы, каждый спортсмен подбирает нужное количество пищи. После физнагрузок рекомендуются продукты с углеводами и белками. Для роста мышечной массы достаточно употребить 50-90 грамм сложных углеводов, 20-30 грамм белка животного происхождения. Дополнительно можно использовать протеиновые коктейли.
- Употребление специальных добавок. Современная фармакология предлагает медикаменты для быстрого восстановления. Это могут быть пластические таблетки, ускоряющие синтез белка, адаптогены и энергетики, ускоряющие усвоение питательных веществ. Несмотря на пользу препаратов, их следует употреблять только после консультации с лечащим врачом.
- Температурное воздействие. Высокая температура улучшает циркуляцию крови и повышает скорость обменных процессов — клетки быстрее регенерируются, мышечная ткань лучше восстанавливается. Положительный эффект, кроме теплой сауны, наблюдается при снижении температуры. Купание в ледяной ванне и растирание льдом улучшают состояние, поскольку снимают отечность мышц.
- Массаж. Процедура, которую рекомендуется выполнять в первые 30 минут после тренировки, снимает боль в мышечных тканях. Она подойдет каждому атлету и сочетается с другими средствами отдыха. Массаж уменьшает отечность мышц, снижает усталость, улучшает кровообращение и убирает мышечные спазмы.
- Восстанавливающая тренировка. Подойдут аэробные упражнения и спокойное кардио. Легкий бег или поездка на велосипеде в течение 10-15 минут в спокойном темпе ускорят кровообращение и разгонят молочную кислоту.
Кардионагрузкам после основного занятия нужно уделять больше внимания, потому что они укрепляют сердце. Продолжительность кардиотренировки зависит от самочувствия. Если после физнагрузок частота сердечных сокращений превышает вашу норму более чем на 20-30 ударов, легкое кардио необходимо. Оно выведет из организма метаболические продукты распада. Рекомендуется делать по 2 минуты низкоинтенсивной тренировки на каждые 10 ударов сверх нормы частоты сердечных сокращений. Если ЧСС составляет около 140 ударов, а норма не превышает 60, то нужная длительность кардио — 16 минут. Организация качественного восстановительного процесса требует знаний и опыта. Чтобы подобрать грамотно распределить силы, рекомендуем обратиться к профессиональным тренерам. Квалифицированные инструкторы фитнес–центра «Марк Аврелий» предложат для вас индивидуальную программу. Купить абонемент в зал можно онлайн или в нашем клубе. По телефону можно получить дополнительную консультацию о скидках, акциях и преимуществах клубной карты.
Источник