Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.
Как найти?
Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования:
Примеры решения
Пример 1
Найти производную функции $ y = x^3 — 2x^2 + 7x — 1 $
Решение
Производная суммы/разности функций равна сумме/разности производных:
Так же было учтено, что производная от константы равна нулю.
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Найти производную функции $ y = \frac<\ln x><\sqrt> $
Решение
Производную дроби найдем по четвертой формуле. Положим $ u = \ln x $ и $ v = \sqrt $. Тогда их производные по таблице основных элементарных функций равны:
Используя формулу №4 получаем:
Выносим множитель $ \frac<1><2\sqrt> $ в числителе за скобку:
Ответ
$$ y’ = \frac<2-\ln x><2x\sqrt> $$
Пример 5
Найти производную функции $ y = \ln \sin 3x $
Решение
Данная функция является сложной, потому производную будем брать по цепочке. Сначала от внешней функции, затем от внутренней. При этом выполняя их перемножение.
Учитывая определение котангенса $ ctg x = \frac<\cos 3x> <\sin 3x>$ перепишем полученную производную в удобном компактном виде:
Источник
Простейшие типовые задачи с производной. Примеры решений
После изучения азов нахождения производной в статьях Как найти производную? Примеры решений и Производная сложной функции мы рассмотрим типовые задачи, связанные с нахождением производной. Желающие улучшить свои навыки дифференцирования также могут ознакомиться с уроком Сложные производные. Логарифмическая производная.
Помимо нового материала у вас есть возможность дополнительно «набить руку» на нахождении производных. Действительно, если речь пойдет о типовых задачах на производную, то, как минимум, во всех примерах нужно будет найти эту самую производную. Я постараюсь рассмотреть приёмы решения и хитрости, которые не встречались в других статьях.
Вот наше аппетитное меню:
Повар на раздаче.
Производная функции в точке
Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:
1) Необходимо найти производную.
2) Необходимо вычислить значение производной в заданной точке.
Вычислить производную функции в точке
Справка:Следующие способы обозначения функции эквивалентны: В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».
Сначала находим производную:
Надеюсь, многие уже приноровились находить такие производные устно.
На втором шаге вычислим значение производной в точке :
Небольшой разминочный пример для самостоятельного решения:
Вычислить производную функции в точке
Полное решение и ответ в конце урока.
Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.
Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.
Вычислить производную функции в точке . Сначала найдем производную:
Производная, в принципе, найдена, и можно подставлять требуемое значение . Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:
Ну вот, совсем другое дело. Вычислим значение производной в точке :
В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому что арктангенсов на студенческий век ещё хватит.
Вычислить производную функции в точке .
Это пример для самостоятельного решения.
Уравнение касательной к графику функции
Чтобы закрепить предыдущий параграф, рассмотрим задачу нахождения касательной к графику функции в данной точке. Это задание встречалось нам в школе, и оно же встречается в курсе высшей математики.
Рассмотрим «демонстрационный» простейший пример.
Составить уравнение касательной к графику функции в точке с абсциссой . Я сразу приведу готовое графическое решение задачи (на практике этого делать в большинстве случаев не надо):
Строгое определение касательной даётся с помощью определения производной функции, но пока мы освоим техническую часть вопроса. Наверняка практически всем интуитивно понятно, что такое касательная. Если объяснять «на пальцах», то касательная к графику функции – это прямая, которая касается графика функции в единственной точке. При этом все близлежащие точки прямой расположены максимально близко к графику функции.
Применительно к нашему случаю: при касательная (стандартное обозначение) касается графика функции в единственной точке .
И наша задача состоит в том, чтобы найти уравнение прямой .
Как составить уравнение касательной в точке с абсциссой ?
Общая формула знакома нам еще со школы:
Значение нам уже дано в условии.
Теперь нужно вычислить, чему равна сама функция в точке :
На следующем этапе находим производную:
Находим производную в точке (задание, которое мы недавно рассмотрели):
Подставляем значения , и в формулу :
Таким образом, уравнение касательной:
Это «школьный» вид уравнения прямой с угловым коэффициентом. В высшей математике уравнение прямой на плоскости принято записывать в так называемой общей форме, поэтому перепишем найденное уравнение касательной в соответствии с традицией:
Очевидно, что точка должна удовлетворять данному уравнению: – верное равенство.
Следует отметить, что такая проверка является лишь частичной. Если мы неправильно вычислили производную в точке , то выполненная подстановка нам ничем не поможет.
Рассмотрим еще два примера.
Составить уравнение касательной к графику функции в точке с абсциссой
Уравнение касательной составим по формуле
1) Вычислим значение функции в точке :
2) Найдем производную. Дважды используем правило дифференцирования сложной функции:
Составить уравнение касательной к графику функции в точке с абсциссой
Полное решение и образец оформления в конце урока.
В задаче на нахождение уравнения касательной очень важно ВНИМАТЕЛЬНО и аккуратно выполнить вычисления, привести уравнение прямой к общему виду. И, конечно же, ознакомьтесь со строгим определением касательной, после чего закрепите материал на уроке Уравнение нормали, где есть дополнительные примеры с касательной.
Дифференциал функции одной переменной
С формально-технической точки зрения найти дифференциал функции – это «почти то же самое, что найти производную».
Производная функции чаще всего обозначается через .
Дифференциал функции стандартно обозначается через (так и читается – «дэ игрек»)
Дифференциал функции одной переменной записывается в следующем виде:
Другой вариант записи:
Простейшая задача: Найти дифференциал функции
1) Первый этап. Найдем производную:
2) Второй этап. Запишем дифференциал:
Дифференциал функции одной или нескольких переменных чаще всего используют для приближенных вычислений.
Помимо «комбинированных» задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции:
Найти дифференциал функции
Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:
(корень пятой степени относится именно к синусу).
Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:
Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение . Найдем производную, используя правило дифференцирования сложной функции два раза:
Запишем дифференциал, при этом снова представим в первоначальном «красивом» виде:
Когда производная представляет собой дробь, значок обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).
Найти дифференциал функции
Это пример для самостоятельного решения.
Следующие два примера на нахождение дифференциала в точке:
Вычислить дифференциал функции в точке
Найдем производную:
Опять, производная вроде бы найдена. Но в эту бодягу еще предстоит подставлять число, поэтому результат максимально упрощаем:
Труды были не напрасны, записываем дифференциал:
Теперь вычислим дифференциал в точке :
В значок дифференциала единицу подставлять не нужно, он немного из другой оперы.
Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на . Окончательно:
Вычислить дифференциал функции в точке . В ходе решения производную максимально упростить.
Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.
Вторая производная
Всё очень просто. Вторая производная – это производная от первой производной:
Стандартные обозначения второй производной:, или (дробь читается так: «дэ два игрек по дэ икс квадрат»). Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое.
Рассмотрим простейший пример. Найдем вторую производную от функции .
Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:
Теперь находим вторую производную:
Рассмотрим более содержательные примеры.
Найти вторую производную функции
Найдем первую производную:
На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную тригонометрическую формулу. Точнее говоря, использовать формулу будем в обратном направлении: :
Находим вторую производную:
Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :
Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.
Отмечу, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.
Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.
Например: Вычислим значение найденной второй производной в точке :
Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.
Найти вторую производную функции . Найти
Это пример для самостоятельного решения.
Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но встречаются чуть реже.
Решения и ответы:
Пример 2: Найдем производную: Вычислим значение функции в точке :
Пример 4: Найдем производную: Вычислим производную в заданной точке:
Пример 6: Уравнение касательной составим по формуле 1) Вычислим значение функции в точке : 2) Найдем производную. Перед дифференцированием функцию выгодно упростить: 3) Вычислим значение производной в точке : 4) Подставим значения , и в формулу :
Пример 8: Преобразуем функцию: Найдем производную: Запишем дифференциал:
Пример 10: Найдем производную:
Запишем дифференциал: Вычислим дифференциал в точке :
Пример 12: Найдем первую производную: Найдем вторую производную: Вычислим: