- Слушая наше дыхание
- Открытие для учебников
- Сигнал тревоги
- Игры с совестью
- Нобелевскую премию по медицине дали за открытие механизма адаптации клеток к кислороду
- Ход исследований
- Начало «нобелевской недели»
- Третье дыхание
- Нобелевская премия по медицине и физиологии вручена за открытие механизма реакции клеток на кислород
Слушая наше дыхание
Что дали науке открытия нобелиатов-2019 по физиологии или медицине
В 2019 году Нобелевскую премию по физиологии или медицине присудили за исследования реакции клеток на нехватку кислорода. Трое лауреатов — два американца и один британец — в течение десяти лет по крупицам восстанавливали механизм того, как клетки ведут себя в стрессовой ситуации и как они посылают сигнал бедствия наружу, в кровь и окружающие ткани. Попутно выяснилось, что эти сигналы тревоги можно как искусственно подавить — и лечить таким образом рак, так и усилить — и избавить людей от нехватки кислорода, а еще — дозировать, управляя судьбой отдельно взятых клеток. Отсутствие кислорода оказалось не менее важно для жизни организма, чем его присутствие.
Открытие для учебников
Хотя премия, по традиции открывающая Нобелевскую неделю, и присуждается «за открытия в области физиологии или медицины», отмечаемые ею исследования, как правило, нельзя однозначно отнести к одной из этих областей. Каждый раз речь идет о какой-то проблеме на стыке фундаментальной и прикладной науки, и, должно быть, Нобелевскому комитету нелегко год за годом удерживать это равновесие.
В 2017 году весы склонились в сторону теории: премия досталась группе ученых, исследовавших молекулярный механизм биологических ритмов (подробнее об этом — в нашем материале «Ход часов лишь однозвучный»). Несмотря на то, что темой внутриклеточных часов в последнее время интересуется множество научных коллективов, до реальных лекарств, которые могли бы скорректировать их ход, ученые пока не добрались.
В 2018 году маятник предсказуемо качнулся в другую сторону: иммунные чекпоинты — механизмы торможения иммунной агрессии, открытые прошлогодними лауреатами премии, оказались интересны, в первую очередь, с практической точки зрения. На основе этих исследований уже разработаны препараты, способные, наоборот, «подгонять» иммунитет и «натравливать» его на опухолевые клетки. К моменту присуждения награды Шведской академии в прошлом году некоторые из них уже применяли на практике (мы писали об этом в материале «Спустить собак с цепи»).
В этот раз стоило ожидать очередного решения в пользу фундаментальной науки, и оно было принято. Премию присудили за открытие механизмов, позволяющих клетке чувствовать нехватку кислорода, реагировать на нее и сигнализировать об этом соседям. У этого открытия есть, конечно, и прикладное значение: на его основе уже созданы препараты для борьбы с анемией и раком, и сегодня они находятся на разных этапах клинических испытаний.
«Неужели премию снова дали за лекарство от рака?» — спросите вы. На самом же деле лекарство от рака — лишь один из частных случаев применения нового открытия, тогда как само по себе оно гораздо глубже. «Ученые часто шутят по поводу “открытия, которое войдет в учебники”, — прокомментировал решение Нобелевского комитета один из его членов, Рэндал Джонсон. — Но сейчас я бы сказал, что мы действительно имеем дело с открытием для учебников. Наши дети будут проходить его на уроках биологии с 12 лет».
Сигнал тревоги
О том, что кислород необходим для существования большинства организмов на Земле, в школьных учебниках пишут уже давно. Рассказывают и о том, как кровеносная система регулирует работу дыхания, — за это открытие Нобелевскую премию присудили еще в 1938 году. В сонной артерии есть скопления чувствительных клеток, реагирующих на концентрацию кислорода в крови. Если она снижается, то эти клетки выбрасывают нейромедиаторы, заставляющие легкие дышать активнее, а сердце — биться быстрее.
В 1980-х годах обнаружилось, что количество кислорода в крови небезразлично еще и почкам. Как только его становится недостаточно, почки выделяют гормон эритропоэтин. Он действует на красный костный мозг, ускоряя образование эритроцитов, чтобы в кровь «помещалось» больше кислорода.
Эритропоэтин выделяется, например, когда человек поднимается высоко в горы, где воздух разрежен и содержит меньше кислорода. Сейчас его иногда используют в качестве допинга спортсмены, чтобы повысить емкость крови и усилить газообмен. Но иногда эритропоэтина не хватает, например при почечной недостаточности, и тогда у человека развивается анемия — в крови снижается число эритроцитов, а клетки задыхаются без кислорода.
Продолжая исследования своих предшественников, Грегг Семенца (Gregg Semenza) из Университета Джонса Хопкинса занялся изучением гена эритропоэтина (EPO). Он пытался вычислить недостающее звено между концентрацией кислорода и работой (экспрессией) гена ЕРО. Семенца искал регуляторную область, которая запускает экспрессию гена в ответ на гипоксию.
В 1991 году поиски увенчались успехом: искомой областью оказался маленький участок перед началом гена. В то же время сэр Питер Рэтклифф (Peter Ratcliffe) из Оксфорда независимо пришел к тому же выводу: он показал, что если ген ЕРО вместе с этим небольшим регуляторным участком пересадить в клетки опухоли печени, то они тоже начинают производить эритропоэтин в ответ на кислородное голодание.
Два года спустя Семенца выделил белковый комплекс, запускавший работу ЕРО, и назвал его HIF — hypoxia-inducible factor, то есть фактор, индуцированный гипоксией. А потом оказалось, что HIF связывается с ДНК во всех клетках человеческого организма. В 1993 году группа Семенцы одновременно с коллективом Рэтклиффа обнаружила, что в любой клетке экспрессия генов изменяется при гипоксии. Сейчас известно около 300 генов, работа которых зависит от концентрации кислорода.
Дальнейшие исследования Семенцы показали, что комплекс HIF состоит из двух частей: одна (ARNT) не зависит от кислорода и работает как переносчик, доставляющий весь комплекс в ядро, а другая появляется в клетке только при гипоксии. Эту белковую часть назвали HIF-1a. Позже выяснилось, что она существует в клетке в нескольких видах: есть еще HIF-2a (который чаще называют EPAS1) и даже HIF-3a.
Сейчас мы знаем, что разные варианты HIF отвечают за разную реакцию на кислород. Например, выделение эритропоэтина в почках регулирует HIF-2a — он работает при хронической, длительной гипоксии. А HIF-1а служит краткосрочным сигналом тревоги, он действует при острой гипоксии и может затормозить деление клетки или даже вызвать ее смерть (апоптоз).
Таким образом, к 1995 году в общих чертах стало понятно, как HIF работает в клетках: с какими последовательностями в геноме связывается и на какие гены действует. Было также ясно, что количество его в клетке может меняться и, судя по всему, иногда его разрушает протеасома — внутриклеточная молекулярная машина для уничтожения отживших свое белков. Однако исходная проблема оставалась нерешенной: по-прежнему было не ясно, как белковый комплекс HIF связан с концентрацией кислорода.
Игры с совестью
В 1995 году Уильям Кэлин (William Kaelin) из Института рака Дана-Фарбер занимался загадкой болезни Гиппеля-Линдау. Это редкое генетическое заболевание, которое встречается примерно один раз на 36 тысяч новорожденных, а проявляется как склонность к развитию опухолей — гемангиобластомы, ангиомы, почечной карциномы и других.
Кэлин доказал, что причиной болезни является мутация в гене VHL (von Hippel-Lindau-supressor). Он также заметил, что в отсутствие белка VHL в клетках начинали работать те же гены, что и при гипоксии.
В то время уже было известно, что VHL может быть как-то связан с протеасомами. А в 1999 году обнаружилось, что VHL и HIF могут взаимодействовать, но только в присутствии кислорода. И пару лет спустя Рэтклифф и Кэлин независимо друг от друга нашли между ними связь.
Оказалось, что в клетке есть ферменты — пролил-гидроксилазы, использующие кислород, чтобы навесить на HIF дополнительные ОН-группы. После этого белок HIF меняет свою форму и лучше связывается с белком VHL, который тащит его на верную «смерть» в протеасому. В отсутствие кислорода вся эта цепочка не работает, HIF «остается в живых» и отправляется в ядро, чтобы повлиять там на экспрессию генов. Пазл сложился.
Этапы ответа на гипоксию. 1. HIF запускает работу генов-мишеней в ядре. 3. В присутствии кислорода пролилгидроксилазы навешивают ОН-группы на HIF. 4. Белок VHL cсвязывается с измененным HIF и направляет его в протеасому. 2. Протеасома расщепляет HIF.
Источник
Нобелевскую премию по медицине дали за открытие механизма адаптации клеток к кислороду
Москва. 7 октября. INTERFAX.RU — Лауреатами нобелевской премии по медицине и физиологии в 2019 году стали британец сэр Питер Рэтклиф и американцы Уильям Келин-младший и Грегг Семенца. Премию присудили за исследования того, как клетки реагируют и адаптируются к изменениям уровня кислорода в окружающей среде.
Работа ученых раскрывает молекулярные механизмы, лежащие в основе того, как клетки адаптируются к изменениям в снабжении кислородом. Исследователи заложили основу для понимания того, как объем содержания кислорода влияет на клеточный метаболизм и на физиологические функции. Исследования ученых могут помочь в разработке новых стратегий в борьбе с анемией, раком и другими болезнями. Подробнее об этих исследованиях говорится в пресс-релизе Нобелевского комитета.
Уильям Келин-младший является профессором Гарвардской медицинской школы, сэр Питер Ретклифф — Оксфордского университета, а Грегг Семенца — Университета Джонса Хопкинса.
Ход исследований
Когда в организме млекопитающих отсутствует кислород, то повышается уровень гормона эритропоэтина, выделяемого почками, тем самым они стимулируют производство новых эритроцитов для доставки кислорода. Однако долгое время было неизвестно, как именно клетки чувствуют кислород.
Грегг Семенца изучал ген эритропоэтина и запуск его работы в ответ на гипоксию — кислородное голодание. Питер Рэтклиф независимо от него также изучал работу этого гена (последовательность нуклеотидов ДНК). Им удалось выяснить, что кислород регулирует его экспрессию (процесс, при котором наследственная информация от гена преобразуется в функциональный продукт — РНК или белок) в самых разных тканях организма, а не только в почках. Во время поиска посредника между накоплением кислорода и экспрессией гена эритропоэтина Семенца обнаружил HIF (hypoxia-inducing factor) — белковый комплекс, который связывается с ДНК напрямую.
В том случае, когда в клетках достаточно кислорода, HIF неактивен и быстро деградирует в цитоплазме клетки. Его уничтожают протеасомы — белковые машины. За их открытие в 2004 году тоже вручали Нобелевскую премию.
Протеасомы расщепляют белки, на которых появляется убиквитиновая метка. И здесь отличился третий лауреат этого года, Уильям Келин. Изучая болезнь Гиппеля-Линдау (генетическое заболевание, при котором чаще развиваются некоторые типы рака), Келин обнаружил, что в раковых клетках часто повышена экспрессия генов, связанных с гипоксией. Болезнь Гиппеля-Линдау связана с мутацией в гене VHL (сокр. от нем. Von Hippel–Lindau) . Келин выяснил, что одноименный белок VHL входит в состав протеасомы и участвует в убиквитинировании и, следовательно, расщеплении HIF, отмечает сайт N+1.
Механизм, с помощью которого клетки реагируют на концентрацию кислорода, играет роль в развитии разных болезней человека. Например, пациенты с почечной недостаточностью страдают от анемии, поскольку почки не справляются с производством эритропоэтина. А многие опухоли, напротив, производят избыточное количество белков, связанных с гипоксией, чем стимулируют рост сосудов. Детальное понимание сигнального каскада, который лежит в основе этих событий, может помочь в разработке лекарств для усиления или подавления ответа на гипоксию в клетках.
В прошлом году Нобелевскую премию по физиологии и медицине получили ученые-иммунологи Джеймс Эллисон и Тасуку Хондзё за открытие терапии рака путем активации иммунного ответа.
В 2017 году награда досталась ученым из США Джеффри Холлу, Майклу Розбашу и Майклу Янгу за изучение молекулярных механизмов, регулирующих циркадные ритмы организма.
Начало «нобелевской недели»
Лауреата премии по медицине и физиологии определяет основанный в 1810 году Каролинский институт в Стокгольме. Члены Нобелевского комитета также могут приглашать для консультаций специалистов.
С вручения премии по физиологии и медицине стартовала «нобелевская неделя». Завтра, 8 октября, станет известен лауреат в области физики, 9 октября — химии. 10 октября объявят лауреатов в области литературы за 2018 и 2019 гг. Лауреата премии мира огласят 11 октября. Премию по экономическим наукам памяти Альфреда Нобеля, учрежденную с 1969 года Банком Швеции, присудят 14 октября.
В 2018 году размер Нобелевской премии увеличили до 9 млн шведских крон (менее $1 млн). В этом году сумма останется такой же. Церемония награждения лауреатов пройдет традиционно в Стокгольме 10 декабря. В этот день в 1896 году скончался шведский предприниматель и изобретатель, основатель премии Альфред Нобель.
Источник
Третье дыхание
Нобелевская премия по медицине и физиологии вручена за открытие механизма реакции клеток на кислород
Нобелевскими лауреатами 2019 года по физиологии и медицине стали Уильям Кэлин (США), сэр Питер Рэтклифф (Великобритания) и Грегг Семенза (США) за открытие молекулярного механизма реакции клетки на кислород. Их премия стала третьей по счету Нобелевской премией за открытия в области клеточного дыхания.
В 1931 году Нобелевскую премию получил немецкий биохимик Отто Варбург за открытие белков — ферментов, которые обеспечивают процесс клеточного дыхания — расщепления биополимеров до воды и углекислого газа с использованием кислорода. В 1938 году нобелевским лауреатом стал бельгийский физиолог Корней Хейманс, который в опытах на собаках установил, что периферические рецепторы играют основную роль в регуляции частоты дыхания, а значит, и количества кислорода в крови.
Тогда же, в 1930-е годы, стал окончательно понятен механизм реакции на недостаток кислорода на уровне организма. В ответ на хронический недостаток кислорода в клетках и тканях организм вырабатывает гормон — эритропоэтин, в крови увеличивается число красных кровяных клеток эритроцитов, переносчиков кислорода с кровью от органов дыхания к тканям. А третья Нобелевская премия за дыхание была вручена за раскрытие молекулярного механизма реакции клеток на недостаток кислорода.
Работая параллельно и независимо друг от друга на генетически модифицированных мышах и на культуре клеток печени, Питер Рэтклифф и Грегг Семенза обнаружили, что механизм ответа на недостаток кислорода одинаков во всех тканях, а не только в почках и печени — основных источниках эритропоэтина, а мутации в регуляторной области гена эритропоэтина приводят к развитию кислородного голодания — гипоксии.
Продолжая исследования, Грегг Семенза открыл индуцируемый гипоксией фактор (HIF), он обнаружил, что HIF состоит из двух различных ДНК-связывающих белков, так называемых транскрипционных факторов, HIF-1-альфа и ARNT. Оказалось, что HIF, связываясь с геном эритропоэтина, усиливает его наработку. Оставался нерешенным вопрос — как HIF определяет момент, когда нужно активировать ген эритропоэтина.
Было известно, что белок HIF-1-альфа, находясь в цитоплазме, постоянно утилизируется в протеасомах, из-за этого в норме его очень мало. При гипоксии HIF-1-альфа приобретает защиту от протеасомной деградации — с него пропадает убиквитиновая метка. Но как это происходит?
Фото: REUTERS/Theresa Keil, Reuters
Фото: REUTERS/Theresa Keil, Reuters
Подсказка, которая помогла найти ответ на этот вопрос, была получена Уильямом Кэлином в ходе исследования болезни Гиппеля-Линдау. Это генетическое заболевание приводит к повышенному риску онкологических заболеваний на фоне мутаций в гене, который кодирует белок VHL. В отсутствие белка VHL в опухолях активировались гены, связанные с гипоксией, а при его возвращении в клетку эти гены подавлялись. Исследователям удалось показать, что белок VHL способен взаимодействовать с HIF-1-альфа, метить его убиквитином, что и требуется для его деградации в норме.
Оставался неясным один вопрос: чем белок HIF-1-альфа при нормоксии отличается от белка HIF-1-альфа при гипоксии. В 2001 году Рэтклифф и Семенза одновременно опубликовали статьи, обнаружив, что при нормальном количестве кислорода происходит модификация белка HIF-1-альфа — пролилгидроксилирование, что позволяет белку VHL узнать и связать HIF-1-альфа. При недостатке кислорода этот процесс нарушается, и HIF-1-альфа идет в ядро клетки.
Реакция клетки на кислород
Когда уровень кислорода (О2) низок (гипоксия), белок HIF-1-альфа защищен от деградации и накапливается в ядре, где он связывается с белком ARNT и связывается со специфическими последовательностями ДНК (HRE) в генах, регулируемых гипоксией (1). При нормальном уровне кислорода HIF-1-альфа быстро деградируется протеасомой (2). Кислород регулирует процесс деградации путем добавления гидроксильных групп (OH) к HIF-1-альфа (3). Белок VHL может затем образовывать комплекс с HIF-1-альфа, что приводит к его деградации кислородзависимым способом (4)
Рисунок: Иллюстратор: Маттиас Карлен, Нобелевский комитет по физиологии и медицине.
В 2016 году трио Кэлин, Рэтклифф и Семенза получило премию Ласкера, ее присуждают в США за фундаментальные медицинские исследования, и она уже стала своего рода предсказанием, что ее обладатель в скором времени получит Нобелевскую премию. Во всяком случае, более 80 лауреатов премии Ласкера стали нобелевскими лауреатами. Так что вручение Нобелевской премии по физиологии и медицине именно этому коллективу ученых было ожидаемо.
Фото: REUTERS/Brian Snyder, Reuters
Фото: REUTERS/Brian Snyder, Reuters
Сейчас много пишут и говорят о том, что открытие молекулярного механизма клеточной гипоксии открывает новые возможности для лечения рака. Об этом же сказано в пресс-релизе Нобелевской ассамблеи шведского Каролинского института (The Nobel Assembly at Karolinska Institute), которая, собственно, и присуждает Нобелевские премии по физиологии и медицине.
Все это верно, только, наверное, не стоит забывать одну деталь. Первым идею о том, что клетки злокачественных опухолей можно и нужно в буквально смысле душить контролируемой гипоксией, еще больше полувека назад высказал Отто Варбург, лауреат самой первой премии за клеточное дыхание. Сказал он об этом и предложил свой вариант «удушения» раковых клеток в 1966 году в лекции на встрече нобелевских лауреатов в Линдау на берегу Боденского озера.
Его алгоритм борьбы с раковыми клетками в итоге оказался бесперспективным, но сам подход к проблеме остался верным, а теперь снова приобрел актуальность.
Вся история открытия говорит о важности процесса адаптации к гипоксии клеток при канцерогенезе, такие состояния возникают при атеросклерозе, инсульте, ишемии, при инфекциях и просто интенсивных нагрузках.
И сейчас окончательно стало понятно, в каких случаях нужно бороться с гипоксией, в каких ее усиливать и, главное, на какие мишени нужно воздействовать. А это позволяет рассчитывать на появление нового класса противораковых препаратов и разработку новых подходов к борьбе с кислородным голоданием клетки при других недугах
Алексей Дейкин, кандидат биологических наук, Институт биологии гена РАН
Источник