- Математика. 4 класс
- Решение простых линейных уравнений
- Понятие уравнения
- Какие бывают виды уравнений
- Как решать простые уравнения
- Примеры линейных уравнений
- Как научить ребенка решать уравнения
- Шаг первый — Надо научить детей понимать уравнения.
- Шаг второй — Научите определять, х в уравнении является целым или частью? Самым большим или «маленьким»?
- Похожее
- Автор
- Рената Кирилина
- Как научить ребенка решать уравнения: 3 комментария
Математика. 4 класс
Конспект урока
Математика, 4 класс
Урок 21. Решение уравнений
Перечень вопросов, рассматриваемых в теме:
- Что такое уравнение?
- Как решить уравнение, где в ответе не число, а числовое выражение.
- Что такое корень уравнения?
- Как найти неизвестное вычитаемое?
Глоссарий по теме:
Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.
Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.
Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении.
Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
Обязательная и дополнительная литература по теме урока:
1. Моро М. И. Учебник для 4 класса четырехлетней начальной школы. М. «Просвещение» — 2017.С. 62,63
2. Волкова Е. В. математика Всероссийская проверочная работа за курс начальной школы. Издательство «Экзамен» 2018.С.27
3. Петерсон Л. Г. математика 3 класс. Часть 2. Ювента, 2015.-96с.: ил. С.77-78
Теоретический материал для самостоятельного изучения:
376 + 282; (х — у) : 3
Являются ли эти записи уравнениями?
Это не уравнения, так как в уравнении должен быть знак «=». Это выражения.
Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.
Рассмотрите другие записи:
24 + х = 49; 24 + х = 79 — 30
Это уравнения, так как это равенства, содержащие переменную.
Попробуем их решить.
Что значит решить уравнение?
Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.
Вспомните алгоритм решения уравнений.
- Вспомнить компоненты действия данного уравнения.
- Определить неизвестный компонент.
- Вспомнить правило нахождения неизвестного компонента.
- Применить правило и найти неизвестный компонент.
- Записать ответ.
- Сделать проверку
Используя алгоритм, решите первое уравнение
Значение неизвестного х = 25. Это корень уравнения.
Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении. В данном случае – это х.
Можно ли решить второе уравнение, используя этот же алгоритм?
Такие уравнения не рассматривались. Какова же цель нашего урока?
Цель урока: научиться решать уравнения, в которых в ответе не число, а числовое выражение.
Такие уравнения мы будем называть составные. Поэтому тема урока: «Решение составных уравнений»
Чтобы решить это уравнение, нужно упростить правую часть.
24 + х = 79 — 30, после чего получаем уравнение известного вам вида
Ответ: корень уравнения 25
Составим алгоритм решения составных уравнений.
Алгоритм решения составных уравнений
1. Найти значение числового выражения.
2. Вспомнить компоненты действия данного уравнения.
3. Определить неизвестный компонент.
4. Вспомнить правило нахождения неизвестного компонента.
5. Применить правило и найти неизвестный компонент.
6. Записать ответ.
7. Сделать проверку.
Решим еще одно уравнение:
Применяем алгоритм решения составных уравнений:
- Найти значение числового выражения: 75 — х = 9 ∙ 7
- Вспомнить компоненты действия данного уравнения: 75 — х = 63
3. Определить неизвестный компонент.
4. Вспомнить правило нахождения неизвестного компонента.
5. Применить правило и найти неизвестный компонент.
6. Записать ответ.
7. Сделать проверку.
Ответ: корень уравнения 12
Вывод: чтобы решить составное уравнение, в которых в ответе не число, а числовое выражение, необходимо упростить правую часть ( т.е решить выражение), после чего получаем уравнение известного вам вида и решаем его, используя алгоритм решения уравнений.
Решим задачу, составив уравнение:
Сумма неизвестного числа и числа 390 равна произведению чисел 70 и 6. Найди это число.
1. Сумма неизвестного числа и числа 390 – обозначим неизвестное число переменной х, тогда получим х + 390
2. Произведение чисел 70 и 6: 70 ∙ 6
3. Получаем уравнение: х + 390 = 70 ∙ 6
Применяя алгоритм решения составных уравнений, решим его:
Источник
Решение простых линейных уравнений
О чем эта статья:
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
- кубические
- уравнение четвёртой степени
- иррациональные и рациональные
- системы линейных алгебраических уравнений
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
- Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.
А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на общий множитель, то есть 6.
Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.
5х — 3х — 2х = — 12 — 1 + 15 — 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Найти неизвестную переменную.
Пример 4. Решить: 4(х + 2) = 6 — 7х.
- 4х + 8 = 6 — 7х
- 4х + 7х = 6 — 8
- 11х = −2
- х = −2 : 11
- х = — 0, 18
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 — 7х..
- 2х + 6 = 5 — 7х
- 2х + 6х = 5 — 7
- 8х = −2
- х = −2 : 8
- х = — 0,25
Источник
Как научить ребенка решать уравнения
Одна и самых сложных тем в начальной школе — решение уравнений.
Усложняется она двумя фактами:
Во-первых, дети не понимают смысл уравнения. Зачем цифру заменили буквой и что это вообще такое?
Во-вторых, объяснение, которое предлагается детям в школьной программе, непонятно в большинстве случаев даже взрослому:
Для того чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Для того чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Для того чтобы найти неизвестное уменьшаемое, нужно к вычитаемому прибавить разность.
И вот, придя домой ребенок чуть ли не плачет.
На помощь приходят родители. И посмотрев в учебник, решают научить ребенка решать «проще».
Нужно же всего лишь перекинуть на одну сторону цифры, поменяв знак на противоположный, понимаешь?
Минус три переносим с плюсом к семерке, считаем и получается х=10
В этом месте у детей обычно происходит сбой программы.
Знак? Поменять? Перенести? Что?
— Мама, папа! Вы ничего не понимате! Нам в школе по-другому объясняли.
— Тогда и решай как объясняли!
А в школе, тем временем, продолжается тренировка темы.
1. Вначале нужно определить какой компонент действия нужно найти
5+х=17 — нужно найти неизвестное слагаемое.
х-3=7 — нужно найти неизвестное уменьшаемое.
10-х=4 — нужно найти неизвестное вычитаемое.
2. Теперь нужно вспомнить правило, упомянутое выше
Для того чтобы найти неизвестное слагаемое, нужно…
Как Вы думаете, трудно ли маленькому ученику все это запомнить?
А еще нужно добавить сюда тот факт, что с каждым классом уравнения становятся все сложнее и больше.
В итоге и получается что уравнения для детей одна из самых сложных тем математики в начальной школе.
И даже если ребенок уже в четвертом классе, но у него трудности с решением уравнениями, скорее всего у него проблема с пониманием сути уравнения. И надо просто вернуться назад, к основам.
Сделать это можно за 2 простых шага:
Шаг первый — Надо научить детей понимать уравнения.
Нам потребуется простая кружка.
Напишите пример 3 + 5 = 8
А на дне кружки «х». И, перевернув кружку, закройте цифру «5»
Уверены, ребенок сразу угадает!
Теперь закройте цифру «5». Что под кружкой?
Так можно писать примеры на разные действия и играть. У ребенка происходи понимание, что х = это не просто непонятный знак, а «спрятанная цифра»
Подробнее о технике — в видео
Шаг второй — Научите определять, х в уравнении является целым или частью? Самым большим или «маленьким»?
Для этого нам подойдет техника «Яблоко»
Задайте ребенку вопрос, где в данном уравнении самое большое?
Отлично! Это будет наше яблоко!
Самое большое число — это всегда целое яблоко. Обведем в кружок.
А целое всегда состоит из частей. Давай подчеркнем части.
5 и х — части яблока.
А раз х — это часть. Она больше или меньше? х большое — или маленькое? Как его найти?
Важно отметить, что в таком случае ребенок думает, и понимает, почему, чтобы найти х в данном примере, нужно из 17 вычесть 5.
После того, как ребенок поймет, что ключем к правильному решению уравнений является определить, х — целое или часть, он легко будет решать уравнения.
Потому что запомнить правило, когда понимаешь его гораздо проще, чем наоборот: вызубрить и учиться применять.
Данные техники «Кружка» и «Яблоко» позволяют научить ребенка понимать, что он делает и зачем.
Учите ребенка понимать программу и тогда процесс учебы станет отнимать у Вас значительно меньше времени и сил.
Вам понравилось объяснение данной темы?
Именно так, просто и легко, мы учим родителей объяснять школьную программу в «Школе умных детей».
Хотите научиться объяснять материалы ребенку также доступно и легко, как в этой статье?
Тогда регистрируйтесь бесплатно на 40 уроков школы умных детей прямо сейчас по кнопке ниже.
Вам понравилась статья? Сохраните себе на стену, чтобы не потерять
Похожее
Автор
Рената Кирилина
Эксперт №1 по эффективному обучению детей в школе, мама троих детей, прошла путь от учителя до директора школы Посмотреть все записи автора Рената Кирилина
Как научить ребенка решать уравнения: 3 комментария
А если Х это 17? Т.е. самое большое как раз не известно?
Хороший пример. Завтра попробую с мученицей.
Источник