- Решение задач с помощью дробных рациональных уравнений
- Примеры
- Дробно рациональные уравнения
- Задания для самостоятельного решения
- Рациональные уравнения с примерами решения
- Рациональные уравнения. Равносильные уравнения
- Применение условия равенства дроби нулю
- Пример №202
- Использование основного свойства пропорции
- Пример №203
- Метод умножения обеих частей уравнения на общий знаменатель дробей
- Пример №204
- Пример №205
- Степень с целым показателем
Решение задач с помощью дробных рациональных уравнений
Примеры
Пример 1. От посёлка до речки 60 км. Утром турист на скутере отправился на речку. Вечером он возвратился в посёлок, но при этом ехал со скоростью на 10 км/ч меньшей и потратил на дорогу на 18 мин больше. Сколько времени ехал турист от речки к посёлку?
Пусть t — время вечером, на дорогу от речки к посёлку.
Тогда время утром, на дорогу от посёлка к речке t- $\frac<18><60>$ = t-0,3 (ч)
По условию разность скоростей равна 10:
$$1,8=t(t-0,3), t \neq 0, t \neq 0,3$$
$$ D = 0,3^2-4 \cdot (-1,8) = 0,09+7,2=7,29 = 2,7^2 $$
$$ t = \frac<0,3 \pm 2,7> <2>= \left[ \begin
Выбираем положительный корень, t = 1,5 ч
Пример 2. Катер прошёл по течению 120 км. На этот же путь против течения от тратит времени в 1,5 раза больше. Найдите скорость течения, если скорость катера в стоячей воде 20 км/ч.
Пусть u — скорость течения
По условию время против течения в 1,5 раз больше:
$$ 1,5(20-u) = 20+u, u \neq \pm 20 $$
Пример 3. В раствор, содержащий 50 г соли, добавили 150 г воды. В результате концентрация соли уменьшилась на 7,5%. Найдите первоначальную массу раствора.
Пусть x — масса воды в первоначальном растворе, в граммах.
По условию разность концентраций:
$$ 50 \cdot 150 = \frac<75> <1000>(x+50)(x+200), x \neq -50, x \neq -200 $$
$$ D = 250^2-4 \cdot (-90000) = 62500+360000 = 100(625+3600) = $$
$$ = 100 \cdot 4225 = 650^2 $$
$$ x = \frac<-250 \pm 650> <2>= \left[ \begin
Выбираем положительный корень x=200 г – начальное количество воды в растворе. Начальная масса всего раствора: 50+200 = 250 г.
Пример 4. Мастер и его ученик, работая вместе, выполняют норму на 8 ч. Если каждый работает самостоятельно, то мастер тратит на выполнение нормы на 12 ч меньше, чем ученик. Сколько часов тратит каждый из них на выполнении нормы?
Пусть N изделий – это норма, t — время, потраченное мастером.
Из последней строки таблицы получаем:
$$ 8(2t+12) = t(t+12), t \neq 0, t \neq -12$$
$$ t^2-4t-96 = 0 \Rightarrow (t-12)(t+8) = 0 \Rightarrow \left[ \begin
Выбираем положительный корень, t=12 ч — время, которое мастер потратит самостоятельно. Ученик потратит 12+12=24 ч.
Ответ: 12 ч и 24 ч
Пример 5*. Один фрилансер может выполнить проект на 12 дней быстрее, чем второй. Над новым проектом первый фрилансер сначала проработал самостоятельно 6 дней, а затем к нему присоединился второй. Через 3 дня совместной работы \frac<3> <5>проекта было готово.
За сколько дней каждый из фрилансеров может выполнить проект самостоятельно? За сколько дней проект был фактически выполнен?
Пусть d — количество дней первого фрилансера при самостоятельной работе.
Источник
Дробно рациональные уравнения
Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .
Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .
Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.
ОДЗ – область допустимых значений переменной.
В выражении вида f ( x ) g ( x ) = 0
ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).
Алгоритм решения дробно рационального уравнения:
- Привести выражение к виду f ( x ) g ( x ) = 0 .
- Выписать ОДЗ: g ( x ) ≠ 0.
- Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
- Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.
Пример решения дробного рационального уравнения:
Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.
Решение:
Будем действовать в соответствии с алгоритмом.
- Привести выражение к виду f ( x ) g ( x ) = 0 .
Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:
x 2 − 4 2 − x − 1 \ 2 − x = 0
x 2 − 4 2 − x − 2 − x 2 − x = 0
x 2 − 4 − ( 2 − x ) 2 − x = 0
x 2 − 4 − 2 + x 2 − x = 0
x 2 + x − 6 2 − x = 0
Первый шаг алгоритма выполнен успешно.
Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2
- Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:
x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.
a = 1, b = 1, c = − 6
D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25
D > 0 – будет два различных корня.
x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3
- Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.
Корни, полученные на предыдущем шаге:
Значит, в ответ идет только один корень, x = − 3.
Задания для самостоятельного решения
№1. Решите уравнение: 3 x − 19 = 19 x − 3 .
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
Решение:
3 x − 19 = 19 x − 3
[ x − 19 ≠ 0 x − 3 ≠ 0 ⇒ [ x ≠ 19 x ≠ 3
Приводим обе дроби к общему знаменателю, записываем дополнительные множители к числителям:
3 \ ( x − 3 ) x − 19 − 19 \ ( x − 19 ) x − 3 = 0
3 ( x − 3 ) − 19 ( x − 19 ) ( x − 19 ) ( x − 3 ) = 0
В соответствии с алгоритмом, приравниваем числитель к нулю:
3 x − 9 − 19 x + 361 = 0
x = − 352 − 16 = − 352 16 = 22
Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ.
№2. Решите уравнение x − 4 x − 6 = 2.
Решение:
Можно решать эту задачу способом, который использовался при решении задачи №8. Но сейчас мы используем еще один способ решения таких уравнений.
Представим число 2 в виде дроби со знаменателем 1 .
Воспользуемся основным свойством пропорции :
произведение крайних членов равно произведению средних (правило «креста»):
a b = c d ⇒ a ⋅ d = b ⋅ c
x − 4 x − 6 = 2 1 ⇒ ( x − 4 ) ⋅ 1 = ( x − 6 ) ⋅ 2
Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ.
Источник
Рациональные уравнения с примерами решения
Содержание:
Рациональные уравнения. Равносильные уравнения
два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.
Так, например, равносильными будут уравнения
Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.
Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.
1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;
2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;
3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
Левая и правая части каждого из них являются рациональными выражениями.
Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.
В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.
Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.
Применение условия равенства дроби нулю
Напомним, что когда
Пример №202
Решите уравнение
Решение:
С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где
и
— целые рациональные выражения. Имеем:
Окончательно получим уравнение:
Чтобы дробь равнялась нулю, нужно, чтобы числитель
равнялся нулю, а знаменатель
не равнялся нулю.
Тогда откуда
При
знаменатель
Следовательно,
— единственный корень уравнения.
Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:
Значит, решая дробное рациональное уравнение, можно:
1) с помощью тождественных преобразований привести уравнение к виду
2) приравнять числитель к нулю и решить полученное целое уравнение;
3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.
Использование основного свойства пропорции
Если то
где
Пример №203
Решите уравнение
Решение:
Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем:
то есть ОДЗ переменной
содержит все числа, кроме 1 и 2.
Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:
По основному свойству пропорции имеем:
Решим это уравнение:
откуда
Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.
Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:
Таким образом, для решения дробного рационального уравнения можно:
1) найти область допустимых значений (ОДЗ) переменной в уравнении;
2) привести уравнение к виду
3) записать целое уравнение и решить его;
4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.
Метод умножения обеих частей уравнения на общий знаменатель дробей
Пример №204
Решите уравнение
Решение:
Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:
Областью допустимых значений переменной будут те значения при которых
то есть все значения
кроме чисел
А простейшим общим знаменателем будет выражение
Умножим обе части уравнения на это выражение:
Получим: а после упрощения:
то есть
откуда
или
Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.
Следовательно, число 12 — единственный корень уравнения. Ответ. 12.
Решая дробное рациональное уравнение, можно:
3) умножить обе части уравнения на этот общий знаменатель;
4) решить полученное целое уравнение;
5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.
Пример №205
Являются ли равносильными уравнения
Решение:
Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.
Первое уравнение имеет единственный корень а второе — два корня
(решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.
Степень с целым показателем
Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:
где — натуральное число,
В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи
Рассмотрим степени числа 3 с показателями — это соответственно
В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:
Число должно быть втрое меньше числа
равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно,
Равенство
справедливо для любого основания
при условии, что
Нулевая степень отличного от нуля числа а равна единице, то есть при
Вернемся к строке со степенями числа 3, где слева от числа записано число
Это число втрое меньше, чем 1, то есть равно
Следовательно,
Рассуждая аналогично получаем:
и т. д.
Приходим к следующему определению степени с целым отрицательным показателем:
если натуральное число, то
Источник